CRITICAL INFRASTRUCTURE AND LAND USE CLIMATE VULNERABILITY ANALYSIS Project Update

>>> NEMAC+FernLeaf

Project Overview

JonesEdmunds

 Task 1 - Future Climate Change Impact Analysis & Stakeholder Engagement

 Task 2 – Location of Critical Infrastructure Vulnerable to Flooding

 Task 3 – Assessment of Increased Climate Change Related Vulnerability to Neighborhoods and Cultural Resources

Survey Results • 601 total responses Target was 400 responses Summary report and results provided to staff

Selected Climate Change Scenario

JonesEdmunds

- Coupled Model Intercomparison Project (CMIP)
 - CMIP 5 (published 2014)
 - CMIP 6 (published 2021)
- Multiple Climate Change Scenarios
- Five Shared Socio-Economic Pathways
 - SSP1 high level of mitigation & adaption ~ 1.5°C rise by 2100
 - SSP5 low mitigation & adaptation ~ 5°C rise by 2100
 - More likely to show trends
 - Highlights planning needs

IPCC INTERGOVERNMENTAL PANEL ON Climate change

Climate Change 2021 The Physical Science Basis

Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change

Extreme Temperatures

Heat Index

Average Number of Days Maximum Heat Index Exceeds Thresholds

Extreme Heat Vulnerability Assessment Ruleset

Exposure		Adaptive Capacity	
н	>75 th percentile developed land cover	L	<25 th percentile tree canopy coverage AND/OR <25 th percentile median income
М	25 th -75 th percentile developed land cover	Μ	25 th -75 th percentile tree canopy coverage AND/OR 25 th -75 th percentile Median Income
L	<25 th percentile Developed Land Cover	н	>75 th percentile tree canopy coverage AND/OR >75 th percentile Median Income

People living in mobile homes are likely to be more exposed to extreme heat due to lack of air conditioning prevalence, insulation and energy usage.

Hatched block groups have greater than >19% mobile home residences

> Low Medium

High 📰

Individuals aged 65 or older are more prone to heatrelated illness.

Hatched block groups have >36% individuals over 65 years of age

About a quarter of public and private school properties and day cares are located in highly heat vulnerable areas.

Student athletes are susceptible to dehydration and heat-related illness from exposure during outdoor practice.

Infants and young children are more susceptible due to less efficient thermoregulation and may lack of resources/knowledge to protect themselves

Food Systems and Agricultural Production

- Agricultural Reference Index for Drought (ARID)
 - Used to quantify drought in the SE
 - Focused on agricultural drought
 - Developed at UF

JonesEdmunds

12

Food Systems and Agricultural Production

- Three Crop Models
 - Field Crop (corn)
 - Forage Crop (Bahia)
 - Vegetable Crop (snap bean)

Food Systems and Agricultural Production

JonesEdmunds

- Three Crop Models
 - Field Crop (corn)
 - Forage Crop (Bahia)
 - Vegetable Crop (snap bean)
- Irrigated & non-irrigated
- Fertilized & non-fertilized

Food Systems and Agricultural Production

JonesEdmunds

- Evaluated yields, biomass, fertilizer & irrigation demand:
 - **2030**
 - **2040**
 - **2070**
 - **2100**

Food Systems and Agricultural Production

Corn

- Significant reduction in yield
- Heat and water deficit stress
- Increased irrigation and fertilizer need

Baseline average yield

🛛 SSP585 average yield

Food Systems and Agricultural Production

Snap Beans

а

- Initial increase in yield (increased CO₂)
- Eventual reduction (heat and water deficit stress)
- Increased irrigation and fertilizer need

Alachua County Snap Bean Production

b Alachua County Snap Bean Production Change for SSP585 (2091-2100)

■ Baseline average aboveground biomass 🛛 SSP585 average aboveground biomass

SSP585 average yield

Bahia Grass Increase in yield (increased

Food Systems and Agricultural

Production

 CO_2)

Alachua County Bahiagrass Production

SSP585 (2091-2100) 60.0

Alachua County Bahiagrass Production Change for

b

Food Systems and Agricultural Production

Livestock Heat Stress

350

- Temperature-Humidity Index
- Correlated with Stress in Livestock
- Dairy cow production impacted THI > 68
- Dry cow stress THI > 77

Population Per Acre, 2021 Non-residential 0 – 1 1 – 4 4 – 7

7 - 10

10 +

Effects Of Climate Migration On

Population Projections

Extended State Population Projections

- Adjusted Projections Based on Climate Migrants (sealevel rise)
- Modeled spatial distribution of population change

2021 Population Density with Climate Migration

JonesEdmunds

10

2100 Population Density

Extended State Population Projections

- Adjusted **Projections Based** on Climate Migrants (sealevel rise)
- **Modeled spatial** distribution of population change

Effects Of Climate Migration On Population Projections

Population Per Acre. 2100

- Keetch-Bryam Drought Index
- Annual Maximum 30-Day KBDI

Annual Average of the Maximum 30-Day KBDI

Average Annual Count of High and Extreme Risk Wildfire Days

- Wildland Urban Interface
- Projected 2040, 2070, 2100

1990-2010: 30% Increase 2021 ~ 316 sq miles

- Wildland Urban Interface
- Projected 2040, 2070, 2100

2021-2040: 33% increase 2021-2070: 67% increase 2021-2100: 97% increase

- Other risk factors:
 - Changes in tropical storms
 - Changes in tropical low systems
 - Changing species composition
 - Changing soil water tables

Effective FEMA Mapping Limited extents Generally outdated **Recent preliminary** study Santa Fe Basin

JonesEdmunds

New countywide flood model
2019 LiDAR (2.5 ft)
14,300 stormwater structures

JonesEdmunds

New countywide flood model 2019 LiDAR (2.5 ft) 14,300 stormwater structures High resolution (80 ft/40 ft/20 ft)

 Model calibration – Hurricane Irma
 Model verification – Tropical Storm Elsa

- 11 Gauges & 80 High Water Marks
- MAE = 1.3 feet

Rainfall Change Factors

- Change in Extreme Rainfall <u>Depth</u>
- Change in Extreme Rainfall <u>Frequency</u>

2040

- 100-year/1-Day Storm 1.35
- 100-year/10-Day Storm 1.21
- **2070**
 - 100-year/1-Day Storm 1.47
 - 100-year/10-Day Storm 1.38

Future Flood Risk – Extreme Rainfall

Current -100-Year Max (10-day)

2070 -100-Year Max (10-day) 31

Groundwater Model

NFSEG Groundwater Model

- Updated to account for projected changes in recharge & ET
- Changes in pumping
- Steady state model

Groundwater Model

 More variation in groundwater levels

Groundwater Model

- More variation in groundwater levels
- Potential impacts to domestic wells

Summary

Task 1 – Weather Related Survey Complete

- Task 2 New Countywide Flood Model (Existing conditions)
- Task 3
 - Population projections
 - Food Systems & Agricultural Production Vulnerability
 - Wildfire Risks & Vulnerability
 - Groundwater Changes

Next Steps

Task 2 – Critical Infrastructure Vulnerability Analysis

- Task 3 Assessment of Increased Climate Change Related Vulnerability to Neighborhoods and Cultural Resources
 - Surface water
 - Water supply
 - Extreme temperature
 - Flooding

QUESTIONS

State and state and states

>>> NEMAC+FernLeaf

JonesEdmunds