

Alachua County Board of County Commissioners

Mary C. Alford, *Chair* Charles S. Chestnut, IV, *Vice Chair* Ken Cornell Anna Prizzia Marihelen Wheeler Administration Michele L. Lieberman *County Manager*

August 30, 2024

The Honorable Gib Coerper, Mayor City of Alachua 15100 NW 142 Terrace Alachua, FL 32615

Re: Affected Party Status at City's Planning and Zoning Board hearing September 10, 2024

Dear Mayor Coerper,

The Alachua County Board of County Commissioners appreciates the City of Alachua's continued dedication to sound planning and protection of our community's shared water resources. At its August 13, 2024, regular meeting, the County Board directed staff to provide data and reports to the City related to Mill Creek Sink and its sensitive connection to our springs and Floridan aquifer, as many of the reports are currently offline as we update our website. In furtherance of these shared interests, and pursuant to Section 2.3.1 of the City's Land Development Regulations, the County hereby requests affected party status and the opportunity to present testimony and evidence for the Tara April Special Exception Permit item on the City's Planning and Zoning Board's September 10, 2024 agenda. The County is a substantially affected party due to its position as receiver and operator of the public water utility named the Santa Fe Hills Water System and its status as the beneficial holder of a conservation easement covering approximately 198 acres of Camp Kulaqua in northwestern Alachua County. In 2005 and 2006, a dye trace study was performed in the Mill Creek Sink area and demonstrated the direct hydrological connection between Mill Creek Sink and the Santa Fe Hills Water System, as well as Camp Kulagua. Impacts to the Mill Creek Sink from the Tara April development, as well as associated developments, could more directly or more significantly harm the County's property interests when compared to the general impacts on the public at large. A copy of the dye trace study is attached to this correspondence for your review. Please advise regarding any requirements on affected parties for submitting proposed evidence prior to the hearing on the Tara April Special Exception, including any applicable timelines.

In support of your efforts to protect these shared resources, the County encourages the City to request the County's technical, fiscal, and other resources (including expert staff in the County's Environmental Protection Department) to assist your staff with the review of upcoming projects with the potential to adversely affect the health, safety, and welfare of our shared residents (*i.e.*, Tara Forest West, Tomaka Hills, and Tara Phoenicia). Our Environmental Protection Department staff are available to consult with your professional staff and answer questions on the sensitivity of this area if that would be helpful.

12 SE 1st Street, 2nd Floor ■ Gainesville, Florida 32601 ■ Tel. (352) 264-6900 or call 711 Relay ■ Fax (352) 338-7363 Commissioners' E-Mail: <u>bocc@alachuacounty.us</u> ■ Home Page: <u>www.alachuacounty.us</u> An Equal Opportunity Employer M.F.V.D. Page 2

Prior to the hearing, we will provide a copy of several known reports and available data to the city related to the sensitivity of Mill Creek Sink and its associated watershed, and the connection of this system to our shared springs and aquifer.

If you are interested, please contact me or Stephen Hofstetter, Director of our Environmental Protection Department. I look forward to hearing from you and working together to preserve our community and protect our water resources.

Sincerely,

Unny C. A

Mary C. Alford, Chair Alachua County Board of County Commissioners Chr24.051

Enclosure

cc: Board of County Commissioners
 Michele L. Lieberman, County Manager
 Sylvia Torres, County Attorney
 Stephen Hofstetter, County Environmental Protection Department Director
 Mike DaRoza, Manager, City of Alachua
 Marian Rush, City Attorney

MILL CREEK and LEE SINKS DYE TRACE ALACHUA COUNTY, FLORIDA JULY-DECEMBER, 2005

Prepared for: **Alachua County Environmental Protection Department** 201 SE 2nd Avenue, Suite 201 Gainesville, FL 32601

Prepared by: Peter L. Butt, Stephen Boyes, P.G. and Thomas L. Morris

> Karst Environmental Services, Inc. 5779 NE County Road 340, High Springs, FL 32643

> > June 7, 2006

TABLE OF CONTENTS

	ЪT
Pag TABLE OF CONTENTS	<u>e No.</u> <i>i</i>
LIST OF FIGURES AND TABLES	iii
LIST OF PLATES	iv
REPORT CERTIFICATION	1
EXECUTIVE SUMMARY	2
ACKNOWLEDGEMENTS	3
INTRODUCTION	4
Authorization	4
Purpose and Scope	4
Personnel	4
Location	5
HYDROGEOLOGIC SETTING	8
DESCRIPTION OF FEATURES WITHIN THE STUDY AREA	16
Mill Creek Sink. Swallet. and Cave	16
Lee Sink and Swallet	18
Santa Fe River	18
Hornsby Spring and Cave	19
Darby Spring	19
Poe Springs Area	19
METHODS	\mathbf{r}
Planning and Logistics	22
Weather and Water Conditions	$\frac{22}{22}$
Water Level Flevations	$\frac{22}{24}$
Dve Selection	$\frac{24}{24}$
Dye Release	25
Sampling Procedures	26
Sampling Frequency and Intervals	27
Sampling Locations	27
Hornsby Spring Area (Camp Kulagua)	27
Poe Springs Area	28

TABLE OF CONTENTS

(continued)

Page No.

Sampling Locations (continued)	-
Santa Fe River Sites	33
Other Springs and Features	33
Municipal Wells	34
Camp Kulaqua Wells	34
Other Private Wells	34
Sample Inventory	35
Duplicate Samples	35
Selection Rationale for Sample Analysis	35
Sample Analysis	36
RESULTS	37
Results of Spectrofluorophotometer Analysis.	37
Hornsby Spring Area (Camp Kulaqua)	37
Camp Kulagua Wells	38
Municipal Wells	47
Poe Springs Area	48
Santa Fe River Sites	48
Other Springs and Features	49
Other Private Wells	49
CONCLUSIONS	50
Hornshy Spring and the Diver Danch Well	50
Sonto Eo Hills Subdivision System Woll	50
Dorby Spring	51
Darby Spring	51
RECOMMENDATIONS	54
REFERENCES	55

APPENDIX I: PHOTOGRAPHIC PLATES

APPENDIX IIA: ANALYTICAL RESULTS (Including Certificates of Analysis) APPENDIX IIB: ANALYTICAL GRAPHS OFANALYZED CHARCOAL SAMPLES APPENDIX IIC: ANALYTICAL GRAPHS OF ANALYZED WATER SAMPLES APPENDIX III: MISCELLANEOUS DOCUMENTS

TABLE OF CONTENTS (continued)

LIST OF FIGURES AND TABLES

Figures	Page No.
Figure 1. Location and General Vicinity Map	6
Figure 2. Study Area Surface Features Map	7
Figure 3. Physiographic Zones, Western Alachua County	9
Figure 4. Alachua Stream System	10
Figure 5a. Stratigraphic Column for the Study Area	12
Figure 5b. Hydrographic Correlation Chart for the Study Area	12
Figure 6. Cross-county Fracture Zone	13
Figure 7a. Potentiometric Surface of the Upper Floridan Aquifer	15
Figure 7b. May 2004 Floridan Aquifer Potentiometric Surface Map	15
Figure 8. Mill Creek Sink Cave and Lee Sink	17
Figure 9. Hornsby Spring Cave Map	20
Figure 10. Sampling Stations and Dye Introduction Sites Map	31
Figure 11. Sampling Stations Map; Hornsby Spring Area	32
Figure 12. Sampling Stations Results Map	42
Figure 13. Sampling Stations Results Map; Hornsby Spring Area	43
Figure 14. Analytical Graph; Hornsby Spring Charcoal Sample	44
Figure 15. Analytical Graph; Hornsby Spring Water Sample	45
Figure 16. Analytical Graph; River Ranch Well Charcoal Sample	46
Figure 17. Study Area Results Map	52
Figure 18. Study Area Results Map; Mill Creek Sink Cave Area	53
Tables	Page No
Table 1 Water Level and Discharge Measurements	<u>1 age NO.</u> 23
Table 2 Dye Introduction Sites Locations and Distances	25 25
Table 3. Sampling Station Locations and Distances	20
Table 4 Well Sampling Station Locations and Distances	30
Table 5 Results of Dye-Positive Sampling Stations	30
radie 5. Results of Dyc-rositive Samphing Stations	57

LIST OF PHOTOGRAPHIC PLATES (APPENDIX I)

Plates

- Plate 1. Mill Creek Sink Swallet.
- Plate 2. Mill Creek Sink.
- Plate 3. Mill Creek Sink Cave. Divers descending...
- Plate 4. Mill Creek Sink Cave. Bottom of the cavern...
- Plate 5. Mill Creek Sink Cave. Large room...
- Plate 6. Mill Creek Sink Cave. Divers in the cave passage...
- Plate 7. Sinkhole above and in the vicinity of the Terminal Room...
- Plate 8. Lee Sink Swallet.
- Plate 9. Lee Sink Swallet during dry conditions.
- Plate 10. Santa Fe River and water level gauge and recorder.
- Plate 11. Hornsby Spring and Run.
- Plate 12. Darby Spring.
- Plate 13. Poe Spring.
- Plate 14. Dye release at Lee Sink.
- Plate 15. Dye release at Mill Creek Sink.
- Plate 16. River Ranch Well.

REPORT CERTIFICATION

Re: Mill Creek and Lee Sinks Dye Trace, Alachua County, Florida July-December, 2005

This report was prepared by Karst Environmental Services, Inc. under the supervision of Stephen R. Boyes a Florida-licensed Professional Geologist.

The information contained herein and the interpretations derived follow accepted and approved professional practice in the field of hydrogeology, and are true and correct to the best of our knowledge.

Date: June 7, 2006

EXECUTIVE SUMMARY

The Mill Creek and Lee Sinks Dye Trace was undertaken by Karst Environmental Services, Inc. (KES) to investigate potential connections between Mill Creek Sink and Lee Sink and springs on the Santa Fe River and wells located near and down gradient of the two disappearing stream systems. The investigation was performed under contract with the Alachua County Environmental Protection Department.

Mill Creek Sink is the swallet (sinkhole that swallows the stream) for Mill Creek, and Lee Sink is the swallet for Cellon Creek. Both sinks lie along the northwestern reach of the Cross-County Fracture Zone in northwest Alachua County. The Cross-County Fracture Zone is one of Alachua County's most prominent hydrogeologic features and extends from Orange Lake, southwest of Gainesville to the Santa Fe River area. Other significant features associated with the fracture system are Hornsby Spring, Splitrock Sink and Big Otter (Moose's Echo) Sink within the San Felasco State Preserve, the Devils Millhopper and Alachua Sink in Paines Prairie.

Twenty pounds of fluorescein dye were released at Lee Sink and twenty pounds of rhodamine WT dye were released at Mill Creek Sink on July 26, 2005 (Day Zero) by KES personnel. Water samples and charcoal dye samplers were placed, collected and replaced at scheduled intervals at eleven spring and five river monitoring locations and from thirteen water supply wells in the study area. Nine-hundred and eighteen (918) charcoal samplers and water samples were collected and of those 194 were analyzed.

The first detection of dye was rhodamine WT, from Mill Creek Sink, at Hornsby Spring and the River Ranch Well between days 12 and 13. The positive detection indicates a direct hydrologic connection between Mill Creek Sink and the Hornsby Spring Cave System. Hornsby Spring is located 6.09 miles and the River Ranch Well 5.69 miles from Mill Creek Sink.

Fluorescein dye, from Lee Sink, was detected at Hornsby Spring and the River Ranch Well between days 28 and 31. The positive detection of fluorescein dye documents a direct hydrologic connection between Lee Sink and the Hornsby Spring Cave System. Hornsby Spring is located 8.9 miles and the River Ranch Well 8.5 miles from Lee Sink.

The detection of both dyes at the River Ranch Well clearly indicates hydrologic connection of the north branch of passage in the Hornsby Cave System to both sinks. Both dyes continued to be detected at Hornsby Spring as late as Day 154, (December 27, 2005).

One water supply well sampling station, a public supply well in Santa Fe Hills Subdivision, detected the arrival of rhodamine WT between days 24 and 28. This well is located 1.27 miles from Mill Creek Sink. No dye was detected in samples collected from the Alachua and High Springs municipal supply wells.

Rhodamine WT was also detected at Darby Spring between Days 31 and 38. Darby Spring is located 6.82 miles from Mill Creek Sink. This may demonstrate a hydrologic connection between Mill Creek Sink and Darby Spring, however, observations made during the study may indicate the potential for an indirect connection.

The dye trace investigation indicates a direct hydrologic connection between two recharge features on the Cross-County Fracture Zone and a spring discharge feature on the same fracture system. The apparent measured rate of groundwater flow in the fracture system is between 1,400 to 2,400 feet per day.

ACKNOWLEDGMENTS

Karst Environmental Services, Inc. would like to acknowledge and thank the following individuals and organizations for their support and contributions to the success of this study:

Phil Yountz, Mike Hopkins, their staff and the Seventh-Day Adventist Conference in Florida for their generous assistance and access to Camp Kulaqua and Hornsby Spring.

The National Speleological Society and its Cave Diving Section for access to the Mill Creek Sink Nature Preserve.

Mike New, Scott Roane and Horace Jenkins; City of Alachua Public Works Department.

Jim Drumm, Lavern Hodge and Don Deadwiler; City of High Springs Public Works Department.

Leonard Withee; Alachua County Public Works – Santa Fe Hills Water System.

The staff of Poe Springs County Park.

Staff of the Division of Recreation and Parks; Bureau of Parks, District 2.

Randy Brown, Park Manager, and Sam Cole, Park Biologist; San Felasco State Preserve.

Dale Kendrick, Park Manager; O'Leno State Park.

Edward Bell, Copeland Farms.

Jim Fleming, Tropic Tradition, Inc.

The Alachua Progress Center; Innovation Partners and Regeneration Technologies.

Cindy Butler; for use of Mill Creek Sink Cave underwater photographs and cave information.

John Moseley; cartographic assistance.

Wayne Kinard; volunteer cave diver.

Diana Gijselaers; GIS and ArcView assistance.

Tom Mirti and the Suwannee River Water Management District.

Tom Greenhalgh and the Florida Geologic Survey.

Tim Hazlett; Hazlett-Kincaid, Inc.

John Davis, PG.; Florida Dept. of Environmental Protection NE District Office.

Stephen J. Emmons; Surveyor, Alachua County Public Works Dept.

Robin R. Hallbourg, P.G. and James L. Myles; Alachua County Environmental Protection Department.

Karst Environmental Services, Inc. staff; Mark Long Georgia Shemitz

INTRODUCTION

Authorization

Karst Environmental Services, Inc. (KES) was contracted by the Alachua County to perform a qualitative dye trace to determine any hydrogeologic connections of Mill Creek Sink and Lee Sink with Hornsby Spring, Poe Spring, Darby Spring and other springs along the Santa Fe River. This work was authorized by Alachua County Contract Number 42189, executed on September 30, 2004. Coordination and administration of this project for Alachua County was with the Alachua County Environmental Protection Department (ACEPD).

Purpose and Scope

The primary purpose of this study was to determine the hydrogeologic connections of Mill Creek Sink (also known as Alachua Sink) and Lee Sink with Hornsby Spring, Poe, Darby and other springs along the Santa Fe River through the use of a qualitative dye trace. Secondary goals included: determining connections with selected public and private water supply wells, determining the approximate arrival time of the dye at the springs and wells, the relative strength of dyes present, and duration of dye.

The scope of this qualitative dye trace included the following elements:

- Dye trace design, planning and logistics: coordination and scheduling of personnel; identification of dye introduction and sampling locations/stations; development of sampling schedules; obtaining site and well access permissions (where needed); securing FDEP approvals; notification of the Alachua County Health Dept. and other public agencies.
- 2. Establish dye sampling stations and conduct background sampling and analysis.
- 3. Introduction of the dyes into the groundwater at the Mill Creek Sink and Lee Sink sites.
- 4. Dye sampler collection and replacement and water sample collection during the study period, along with sampler handling and preparation and shipment to the analytical laboratory.
- 5. Analyses of dye samplers and water samples.
- 6. Data management and reporting.

Personnel

This study was designed, organized and supervised by Peter L. Butt and Stephen Boyes, Florida P.G. #184. Dye release was conducted by Pete Butt, Mark Long and Tom Morris, with assistance form ACEPD staff. Charcoal sampler and water sample collection was conducted by Peter Butt, Tom Morris and KES staff. This report was prepared by Peter Butt, Stephen Boyes and Tom Morris.

Location

The study area is located in northwestern Alachua County, and includes the cities of Alachua, High Springs and surrounding area. See Figures 1 and 2. Sampling sites were also located in extreme northeast Gilchrist County and southern Columbia County. The Santa Fe River forms the boundary between Alachua and Gilchrist Counties on its south and east side with Columbia County on the north and west side in the study area. All springs in this study discharge into the Santa Fe River.

Mill Creek Sink is located approximately 1.1 miles northwest of the City of Alachua, in the northeast quadrant of the Interstate 75 and Highway 441 interchange. Lee Sink is located approximately 1.85 miles southeast of the City of Alachua, south of the Progress Center Industrial Park and within the western section of the San Felasco Hammock State Preserve. Hornsby Spring is located approximately 1.6 miles north of High Springs, and within the grounds of Camp Kulaqua. Poe Spring is located approximately 3.1 miles west of High Springs, within the Poe Springs County Park.

Study Area Surface Features Map.

HYDROGEOLOGIC SETTING

The study area falls in the Northern Highlands Marginal Zone, the Western Valley and the High Springs Gap. "The Northern Highlands are separated from several ridges of the Central Highlands of the Florida peninsula...the Northern Highlands are separated from the northern end of the Brooksville Ridge only by the High Springs Gap some 12 miles across... All of the Highlands seem to be dissevered remnants of a once continuous residual highland" (White, 1970). "The topographic character of the Northern Highlands east of the Suwannee River is various...In general the terrain is maturely dissected in a gentle rolling manner for some 10 to 20 miles back from the toe of the (Cody) scarp zone... In the flatter undisected parts of the area toward the north, streams in general have little freeboard and flow in shallow channels essentially at the level of the surrounding terrain. In the dissected peripheral zone (dye trace study area) ... the streams trend to be incised and with surprising frequency go underground into cavernous subterranean avenues as they approach the toe of the scarp" (White, 1970).

This study focuses on features located within this transition area: Mill Creek Sink, Lee Sink, Hornsby and Darby Springs, the Santa Fe River Sink and Rise, Poe Springs, and other springs on the Santa Fe River. Figure 2 provides a partial copy of the topographic map (25 foot contour interval) of the study area. Figure 3 provides a physiographic map, modified from Williams, 1977, in which the study area is located. The Northern Highlands Marginal Zone is characterized by layers of undifferentiated sediments overlying clayey sediments of the Hawthorn Group. This association of overlying sediments and limestone bedrock leads to a well defined system of streams which disappear into sinks as the streams approach the toe of the (Cody) scarp and the Hawthorn Group materials are thin and are breached by sinkholes. The Western Valley is a subdued limestone plain overlain by a thin mantle of soil and residual hills containing remnants of Hawthorn Group sediments.

The Alachua Stream System is located in the vicinity of the City of Alachua, and is a stream system dissected by the formation of sinkholes. Figure 4 provides a map of the Alachua Stream system (Williams, 1977). The system of multiple disappearing streams drains a basin of over 70 square miles. The system as a whole contains more than ten swallet holes that divert water underground and directly recharge the Floridan aquifer. The Alachua Stream System includes Mill, Cellon, Turkey, and Blues Creeks, Townsend Branch, Bad Dog Branch and others. Sinkhole and other features here include Mill Creek, Lee, Splitrock and Big Otter Swallets, and Burnetts Lake and Sanchez Prairie. Both Mill Creek and Cellon Creek emanate from and drain portions of the Northern Highlands. These creeks disappear near the Cody Scarp and the karst terrain of the Western Valley.

Investigation by Macesich, 1988 provides an interpretation of the aquifer pollution potential in Alachua County and names this transition area where streams are captured the perforated zone. "The perforated zone trends (from the northwest) southeastward in a variable, one-to-five mile wide band roughly paralleling Interstate 75. Sediments underlying the perforated zone may contain substantial thickness of clays, but are perforated by numerous karst features. These features allow direct hydraulic access to the aquifer" (Macesich, 1988).

Figure 3. Physiographic Zones, Western Alachua County (after Williams, 1977, Modified).

Figure 4. Alachua Stream System. Figure is from Williams, et.al., 1977; Florida Bureau of Geology Report of Investigations No. 85.

Figure 5a provides a stratigraphic column for the study area and Figure 5b provides a hydrostratigraphic column applicable for the area. In the study area, undifferentiated sediments composed of sands and clayey sands, overlie a thin to absent Hawthorn Group. The Eocene-aged Ocala Limestones (formerly "Ocala Group") underlie the entire area. The undifferentiated sands and clays are of varying thickness and are found at the surface in both the Northern Highlands and the Gulf Coastal Lowlands. These sediments are predominantly fine and medium sands and contain discontinuous lenses of clayey sands.

The Hawthorn Group underlies the undifferentiated sediments in the Northern Highlands and is reported to be between 60 and 150 feet thick. The erosional front of the Hawthorn Group is termed the Cody Scarp and defines the boundary of the Northern Highlands and the Western Valley Gulf Coastal Lowlands.

The Hawthorn Group is comprised of clays, phosphatic sands, limestone and dolomite. In areas where the Hawthorn Group is sufficiently thick it forms the intermediate aquifer system and intermediate confining bed. The Hawthorn Group as a whole behaves as an aquitard overlying of the Floridan aquifer. In the study area the Hawthorn Group is thin to absent and where present behaves as an aquitard perching water above the regional water table, the potentiometric surface of the Floridan aquifer.

The Floridan aquifer is the only aquifer present through the entire study area. The aquifer is composed of fractured and cavernous limestones and is approximately 1,300 feet thick in the study area. The direction of groundwater flow is to the northwest toward the Santa Fe River.

In the Western Valley, High Springs Gap and the Gulf Coastal Lowlands erosion removed much of the sediments younger than the Eocene-aged Ocala Limestone and subsequent deposition created the thin veneer of undifferentiated sediments, sands and clayey sands, overlying the limestones.

The dominant structural features present in the study area are joints. Joints are vertical breaks, fractures in the limestone, that have shown no displacement. These structures provide flow paths for the movement of water in the subsurface. The joints and bedding planes present in the limestone erode and chemically dissolve by the circulation of water within them to form (secondary porosity) caverns and solution channels. The caverns and solution channels over time enlarge and become the dominant groundwater flow paths within the limestone.

Structurally the study area is impacted by the Ocala platform (formerly "uplift"). "The crest of the uplift is extensively fractured...The western part of Alachua County is on the northeastern flank of the Ocala uplift" Williams, 1977). The Cross-County Fracture Zone is a "lineation of karst solution features within Alachua County that extends from Orange Lake to the south, northwest to the Santa Fe River Sink in a direction of N 40 W" (Williams, 1977). Figure 6 provides a map of the cross Cross-County Fracture Zone presented by Williams, 1977. The drainage sinks and discharge mapped by this investigation occur in the Cross-County Fracture Zone.

System	Series	Formation			
Quaternary	Holocene				
	Pleistocene	Undiferentiated Sands and Clays			
Tertiary	Pliocene				
	Miocene	Hawthorn Group			
	Oligocene	absent			
	Eocene	Ocala Limestone			
		Avon Park Formation			

Figure 5a. Stratigraphic Column for the study area. Figure is adapted from Hoenstine, et.al., 1991; Florida Geological Survey Special Publication No. 33.

Hydrostratigraphic Unit	Geologic Unit	Series		
Surficial aquifer system	undiferentiated terrace, marine and fluvial deposits	Post-Miocene		
Intermediate aquifer system or Intermediate confining unit	Hawthom Group	Miocene		
Floridan aquifer system	Ocala Limestone	Eocene		
	Avon Park Formation			

Figure 5b. Hydrographic correlation chart for the study area (modified from Southeastern Geological Society Ad Hoc Committee, 1985). Figure is adapted from Hoenstine, et.al., 1991; Florida Geological Survey Special Publication No. 33.

Figure 6. Cross-County Fracture Zone. Figure is from Williams, et.al., 1977; Florida Bureau of Geology Report of Investigations No. 85.

The Cross-County Fracture Zone originally formed as a result of fracturing related to the Ocala platform. In recent geologic time the fracture zone underwent extensive solution development in relation to runoff recharge flowing into it from the Northern Highlands. The Cross-County Fracture Zone is one of Alachua County's most prominent hydrogeologic features. In the county the fracture zone includes portions of the Santa Fe River (Sink and Rise), a large sink in Orange Lake 45 miles southeast of the Santa Fe River, Alachua Sink which is the predominant drain for Paynes Prairie, a number of sinks on the campus of the University of Florida, the Devils Mill Hopper and the Alachua Stream System which includes the sinks investigated in this report. The Cross-County Fracture Zone receives much of the runoff generated from the northeastern half of Alachua County.

The project area is completely underlain by the Floridan aquifer. Figures 7a and 7b provide recent potentiometric surface maps of the area. The thin veneer of undifferentiated sediments do not provide for the formation of the Surficial or Intermediate Aquifer systems, nor do they form a confining layer over the Floridan aquifer. In the study area, the Floridan aquifer is unconfined. The potentiometric surface of the aquifer and the water table are the same. The disappearing streams flow directly into the Floridan aquifer.

Figure 7a. Potentiometric Surface of the Upper Floridan Aquifer in the Suwannee River Water Management District, May 2005 (SRWMD, 2005).

Figure 7b. May 2004 Floridan Aquifer potentiometric surface map in Alachua County (ACEPD, 2005).

DESCRIPTION OF THE STUDY AREA

All features discussed within this report are located within Alachua County with the exception of "The Crack" and Twin Cypress Springs, which are located in Columbia County, and Lilly, Pickard and Blue Springs, which are located in Gilchrist County. Please refer to Figure 2.

Water depths presented in the following descriptions are approximate, and represent the conditions usually encountered by divers during normal water levels in these locations. The variation in the levels of the water table, creeks and the Santa Fe River will affect depth gauge readings. There are also minor variations between the individual depth gauges used.

Mill Creek Sink, Swallet and Cave

Mill Creek Sink and Swallet are the present day endpoints of Mill Creek. Mill Creek and its northern tributary, the Townsend Branch, currently drain about 13 square miles northwest of the city of Alachua. The Mill Creek drainage was part of the ancient Alachua Stream System (Williams, et.al., 1977). See Figure 4. This formerly integrated surface drainage system has been reduced to localized segments that end at swallets, including Mill, Lee, Splitrock and Big Otter swallets and Burnetts Lake. Mill Creek Sink and Swallet were the most downstream of these drainage features.

Mill Creek is an ephemeral stream with highly variable flow. It drains into a large, closed basin with several ponds, and flows through a cypress swamp and into Mill Creek Swallet. See Plate 1. The swallet connects to the Sink via an underground passage, about 200 feet long, and running at a depth of about 40 feet. This passage opens into the north side of Mill Creek Sink's large vertical passage. See Figures 8 and 18.

Mill Creek Sink, located on the north side of State Highway 441, is within 100 feet of that roadway, and the water surface is typically about 35 feet below the sinkhole rim. See Plate 2. Mill Creek Sink and Swallet are owned by the National Speleological Society (NSS), and with the surrounding property, comprise the NSS' Mill Creek Sink Nature Preserve. The NSS has installed stairs to allow divers to access the sink.

The large vertical passage, or cavern, within Mill Creek Sink is the beginning and entrance into Mill Creek Sink Cave. This cavern continues to a depth of 150 feet, where a junction divides the cave conduit into upstream and downstream passages. See Plates 3 and 4. The upstream conduit continues to the northeast from the junction for about 40 feet, where it opens into a large room. This room spans about 50 feet across and the ceiling reaches a water depth of about 70 feet. A large, partially eroded bank of clay on the floor is the salient feature dominating this room. See Plate 5.

The passage continues beyond this room, narrowing to about 10 feet wide by 7 feet high. It then opens into a second room, about 30 feet wide by 15 feet high by 50 feet long. The passage again narrows until it reaches a third room. Beyond this point, passage dimensions get smaller, and two drops in cave depth are encountered, the first to 185 feet deep, followed within 400 feet to a drop to 215 feet. The cave passage has several branches at this point, and becomes complex. The present limit of exploration and survey is in this area. Plate 6 shows passage typical of the upstream cave.

Figure 8. Mill Creek Sink Cave and Lee Sink

The downstream passage drops quickly from 150 feet deep at the junction to 190 feet deep. After a short distance (30 feet) it continues back up along a sediment bank to a depth of 120 feet, where the passage levels off. It continues at that depth for about 100 feet and then drops to 160 feet and into a section of passage known to divers as the "Subway". Beyond the Subway, the cave rises to a depth of 100 feet and runs at that depth for 300 feet until it again descends into a narrow passage about 200 feet deep. This passage continues for about 150 feet until it reaches a section that has a ceiling with narrowing walls that extends upwards to a water depth of 70 feet. There is also a breakdown or debris pile here. This section opens into the "Terminal Room", and is a complex section of this cave. This subterranean room has been recently identified through the use of a radiolocation device to be in the vicinity of a sinkhole on the surface. See Plate 7. Beyond the Terminal Room, the cave splits into three distributary passages. This area represents the present extent of exploration of the downstream section.

Lee Sink and Swallet

Lee Sink is the surface endpoint for Cellon Creek, and lies at the western end of the San Felasco Hammock State Preserve. See Figure 8 and Plate 8. The area collectively referred to as "Lee Sink" is composed of two features: the swallet where the incoming flow from Cellon Creek flows underground and the large sink immediately to the west of the swallet. These features are separated by a ridge. Casual observations during this dye trace indicated that when the swallet water level was high, the sink level was lower. There was always water in the sink.

For the purposes of this study, references made herein to Lee Sink specifically refer to the swallet portion. The swallet was the point of dye introduction. During late November, Cellon Creek ceased to flow into the swallet, and many of the normally submerged features there were exposed. See Plate 9. Two "peninsulas" jut in from both sides of the channel around the active section of the swallet, and may be man-made. It was speculated that the materials in these features were brought in to create a barrier to retard flow into the swallet, probably for agricultural water needs. This barrier is now breached, and the water flows freely into the swallet. Eyewitness accounts from prior droughts indicate that the depression in the bottom of the swallet dries up but remains covered with a mantle of alluvium.

Santa Fe River

The Santa Fe River was the primary axis for almost all of the natural features sampled during this dye trace. The portion of the Santa Fe River that was included in this study ran from just above the river sink at O'Leno State Park to the river rise (about 3 miles of natural bridge) and then downstream to Blue Springs in Gilchrist County (about 10 river miles). The river is the discharge point for all springs monitored during this study.

This river is the boundary between Alachua County and adjacent Gilchrist County on its east and southern banks, and Columbia County on its north bank. The bridges for State Highways 27 and 441 cross the river within the study site, west of the City of High Springs. The SRWMD water level gauge and recorder at the Highway 441 bridge location was utilized in this study. See Plate 10.

The Santa Fe River contains many unique features in the study area, including: the river sink, natural bridge and rise at O'Leno State Park; several river swallets and rises; and, numerous springs including Hornsby, Darby, Poe, Watermelon, Fenceline, Twin Cypress, The Crack, and

Lilly Springs. During periods of low water, this river receives most, and sometimes all, of its water from groundwater sources.

Hornsby Spring and Cave

Hornsby Spring is located on the southeast side of the Santa Fe River, with 4,200 feet of run to the river. See Plate 11. It lies within Camp Kulaqua, a privately-owned park northwest of the city of High Springs. Hornsby Spring is classed a first magnitude spring, with discharges measurements as high as 250 cubic feet per second (CFS) (Scott, et.al., 2004). The spring itself is the recreational waterfront for the park. It flows from a 35 foot deep pool surrounded by limestone ledges. The water is clear, but tends to be greenish and sometimes dark-brown in color. The run flows out into a bottomland swamp towards the Santa Fe River. Some of the water in the run enters at least four known swallets. There are two swallets, one of which is known as Treehouse Swallet, that share a cave system that has been explored by divers. This cave is extensive and runs towards the river, but with no known point of discharge. Two more swallets with relatively short caves are located further down the run. One of these discharges is at Treehouse Spring on the Santa Fe River, and the other discharges back into the lower section of the Hornsby Spring Run.

The spring is fed by a network of cave passages that have been explored and surveyed by cave divers since the 1970's. See Figure 9. Near the spring, the passage runs south and then east, where a passage splits off of the main passage and runs south. The main passage continues to run east for 1,400 feet to a large sink. This sink is open to the cave, and is often used as an entry point for explorers. This main cave passage continues to run east for about 900 feet where it splits into a north and south passage. These passages continue to run east, beyond County Road 236.

Darby Spring

Darby Spring is located on the south bank of a small island in the Santa Fe River, about 800 feet upstream from the Highway 441 bridge. See Plate 12. The spring opens to a channel on the south side of the island. This channel is part of a man-made system that is connected further upstream to the Hornsby Spring Run. The property on the south bank is owned by Camp Kulaqua.

This spring has no noticeable discharge, and is reported by cave divers to be colder than any other area springs. It opens to a small, winding passage that runs beneath the island, looping west and then back east for over 3,000 feet to beneath another small un-named spring on the Columbia County side of the river. This un-named spring is located about 350 feet northeast of Darby Spring, and has been given the catalog number of COL428981 by the Suwannee River Water Management District (SRWMD). Observations made by cave divers indicate that this smaller spring may also function as a swallet at higher river levels. The cave passage runs at depths of 60 to 80 feet deep, and is very silty.

Poe Springs Area

Poe Springs is the largest spring of a group of springs along the Santa Fe River that lie 2.5 to 4 miles west of High Springs. These springs all have a greenish color to their waters, suggesting an influence by tannin-stained surface waters. Except for Poe Spring and "The Crack", none of these springs are known to have any enterable cave passage.

Hornsby Spring Cave Map.

Poe Springs is located within Poe Springs County Park, and is the focus of recreation activities there. See Plate 13. It has a 120 foot diameter circular head pool, with a depth of about 19 feet. There are numerous vents in the exposed limestone bedrock within the head pool area. A small, restrictive cave has been explored for about 50 feet, to a depth of about 50 feet. A 75 foot run flows to the Santa Fe River. Poe Spring's discharges have been measured as high as 93.1 CFS, and as low as 6.1 CFS (Scott, et.al., 2004). The water is clear, but tends to have a greenish color.

Other springs within the park include Watermelon Spring, located about 300 feet west of Poe Spring Run. This small spring discharges into a long run that flows west and parallel to the river. Watermelon Spring #2 is a much stronger spring located on the bottom of the Santa Fe River, just out from the riverbank near Watermelon Spring. This vent produces a noticeable raised boil on the surface of the river under normal water conditions.

Upstream of Poe Spring, there are three springs identified for this study. Fenceline Spring is about 2,600 feet upstream of Poe, and discharges from the bottom of the river near the Alachua County side. "The Crack" spring is located on the Columbia County side, about 1,000 feet upstream of Poe Spring. It is a limestone fissure about 30 feet long and 30 feet deep. It has cave passages that have been explored for at least 700 feet, to a depth of about 60 feet. The cave passage is small, silty and is considered and advanced cave dive. Twin Cypress Spring discharges from the bottom of the river along the Columbia County bank, and is about 700 feet upstream of Poe Spring.

The run from Seven Sisters Spring discharges on the Columbia County side, about 3,500 feet down-river from Poe Springs. The Seven Sisters Spring is a complex group of vents that are located in the bottomland floodplain forest flanking the river, about 450 feet north of the river. The water discharged here is typically greenish-brown in color.

Lilly Spring and Pickard Spring are located 4,700 and 4,900 feet, respectively, downstream of Poe Spring, on the Gilchrist County side. Lilly Springs discharges waters with a greenish-brown color, while the waters at the nearly adjacent Pickard Springs appear to be less colored. Neither of these springs have explorable cave passage.

METHODS

Planning and Logistics

Key planning elements for this study included: the selection of appropriate dye introduction and sampling points; selection of dyes and quantity to be used; methods for dye recovery and analyses; observation and anticipation of weather and water conditions. Logistical concerns included: scheduling of staff, background sampling, dye release, and the collection, preservation and shipping of samples. Procedures generally followed those as outlined in the "Groundwater Tracing Handbook" (Aley, 1999) and "Procedures And Criteria - Analysis of Fluorescein, Eosine, Rhodamine WT, Sulforhodamine B, and Pyranine Dyes In Water and Charcoal Samplers" (Aley, 2003).

Weather and Water Conditions

The pre-conditions considered desirable for the success of this dye trace included falling river hydrographs and at least some inflow into the sinks selected for dye release. These desirable conditions were in place during July of 2005. Rainfall, that earlier in the year had raised river levels, ceased after mid-July. The total rainfall for July was measured at 5.98 inches; at least 75 percent of this amount fell during the first half of that month. The rainfall data cited here was provided by SRWMD (2006^{1}), and was collected at the High Springs Forestry Tower, about six miles south of High Springs.

This previous rainfall had delivered enough water locally to maintain a flow from Cellon Creek into Lee Sink of 2.45 CFS, as measured on July 1. See Table 1. Santa Fe River levels peaked during mid-July, and began a slow drop as monitored at the Highway 441 bridge water level gauge (SRWMD, 2006¹). This created optimal conditions for a late July or early August dye release.

Inflowing water conditions were present at Lee Sink Swallet during the dye introduction on July 26, 2005, even through the flow in Cellon Creek had dropped (0.11 CFS on July 27, 2005). There was no flow from Mill Creek into the Mill Creek Swallet on July 27, and evidence of only very minimal inflow was observed on a few occasions after that.

Rainfall was below average during the study, with 3.05 inches recorded for August, no rainfall recorded for September, 3.21 inches in October, and 1.95 inches recorded for November (SRWMD, 2006¹). Cellon Creek maintained flow, measured once more by KES, at 0.39 CFS on October 5. See Table 1. After that, the water dropped significantly at Lee Sink. Levels dropped below the study staff gauge and the sink basin all but dryed up during late November and early December. See Plate 9.

Two routine discharge measurements were made by the SRWMD at Hornsby Spring during the study. The first was discharge measured was 190 CFS on August 24, 2005, and the second was 150 CFS, measured on October 11, 2005 (SRWMD, 2006²).

TABLE 1.	ABLE 1. WATER LEVEL and DISCHARGE MEASUREMENTS										
Mill Creek and Lee Sinks Dye Trace, Alachua County, Florida, July-December, 2005											
Summary Table of Water Level, Rainfall and Discharge Measurements Recorded During the Study.											
	441	Bridge	Mill Creek S		allet			Lee Sink	Swallet		Misc.
_		Gauge**		Staff Gauge	*	Elevation		Staff Ga	auge*	Elevation	Discharge
Date:	Time:	Reading:	Time:	Reading:	NGVD:	Difference:	Time:	Reading:	NGVD:	Difference:	Msmnts.:
7/4/2005	14:00	22.22					40.05	0.00	C2 20	20.00	2 45 050*
7/1/2005	14:00	33.32	-	-	-	-	13:35	2.02	63.28	29.96	
7/13/2005	10.00	34.391	-	-	-	-	11.10	4.29	05.55	31.159	
7/19/2005	12:00	34.199	11:42	2.43	39.11	4.911	11:53	4.11	64.66	31.171	
7/25/2005	14.00	33.57	-	-	-	-	14.04	3.4	04.00 64.56	31.09	
7/26/2005	11.00	33.40	12.04	2.4	39.00	5.0 5.0	10.40	3.3	04.00 64.27	31.00	0.44.056*
112112005	14:00	33.41	11:45	2.41	39.09	5.00	14:30	3.11	04.37	30.96	
8/1/2005	12:00	33.15	12:50	2.33	39.01	5.86	11:57	2.5	63.76	30.61	(Genon Greek)
8/2/2005	16.00	33.10	13.32	2.30	39.03	5.65	-	-	-	-	
8/3/2005	14.00	22.10	17.09	2.41	39.09	5.91	14.20	2.10	03.44	30.20	
8/4/2005	17.00	22.10	17.00	2.41	39.09	5.95	-	- 1.0	-	-	
8/3/2005	14.00	22.76	-	-	-	-	13.50	1.9	03.10	29.90	
8/8/2005	14:00	33.20	19.15	2.41	39.09	5.65	-	-	-	-	
8/0/2005	14.00	33 381	-	- 2.38	- 30.06	- 5 679	13.50	5.1	04.30	51.02	
8/11/2005	14.00	33.461	15.55	2.50	33.00	3.073	- 16.15	- 3 15	- 64.41	- 30.949	
8/13/2005	18:00	33 381	- 18:05	- 2 36	- 39.04	- 5 659	10.15	0.10	04.41	30.343	
8/15/2005	16:00	33.23	10.00	2.00	00.04	0.000	- 16:30	2.98	- 64 24	- 31.01	
8/17/2005	17:00	33.1	- 17.27	2 34	39.02	5 92	10.00	2.00	01.21	-	
8/23/2005	16:00	32 869	-	-	-	-	15:45	2 17	63 43	30,561	
8/24/2005	12:00	32.859	-	-	-	-	-	-	-	-	190 CFS**
8/26/2005	18:00	32 859	-	-	-	-	17:45	2.51	63 77	30.911	(Hornsby Spring)
8/29/2005	17:00	32.82	17:25	2.25	38,93	6.11	17:05	3.04	64.3	31.48	
8/31/2005	13:00	32.83	12:03	2.22	38.9	6.07	13:06	3.56	64.82	31.99	
9/2/2005	18:00	32.859	17:30	2.38	39.06	6.201	18:10	4.5	65.76	32.901	
9/9/2005	19:00	32.77	17:36	2.21	38.89	6.12	18:45	4.2	65.46	32.69	
9/16/2005	14:00	32.66	14:40	2.07	38.75	6.09	14:15	3.37	64.63	31.97	
9/23/2009	17:00	32.58	-	-	-	-	17:25	2.34	63.6	31.02	
9/30/2005	16:00	32.51	16:45	1.9	38.58	6.07	16:15	1.19	62.45	29.94	(Cellon Creek)
10/5/2005	15:00	32.5	16:32	1.93	38.61	6.11	15:00	0.25	61.51	29.01	0.39 CFS*
10/11/2005	12:00	32.82	-	-	-	-	-	-	-	-	150 CFS**
10/14/2005	14:00	32.779	14:03	1.78	38.46	5.681	13:52	1.99	63.25	30.471	(Hornsby Spring)
10/25/2005	13:00	32.49	13:47	1.62	38.3	5.81	13:30	0.84	62.1	29.61	
Study Avera	ges:	33.12			38.91	5.85			64.01	30.91	
Monthly Ra	infall Ave	erages (200	5)**	Lee Sink (Sv	wallet) Staff	Gauge:		Mill Creek S	wallet Staff	Gauge:	
(in inches)				6.60' on Gau	uge = 67.86	1		6.60' on Gau	uge = 43.28	1	
July:	5.98			0' on Gauge	= 61.26'			0' on Gauge	= 36.68'		
August:	3.05			Reference m	nonument e	levation $= 67.92$	2'	Reference m	nonument e	levation = 42.68	3'
September:	0			Elevation data for staff gauges provided by Alachua County Public Works Department.							
October:	3.21										
November:	1.95										
(Rainfall recorded at the High Spring Forestry Tower.)											
Notes:	All eleva	tions are NG	is are NGVD 1929. * Data Collected by KES. ** Unpublished data provided by SRWI					/ID.			

Water Level Elevations

Water level elevations were monitored at the dye introduction sites and at river and spring locations to observe hydrologic gradients during the study. Prior to dye release, KES installed enamel staff gauges at each swallet. Alachua County surveyors then installed elevation benchmarks, and provided an elevation conversion for each staff gauge. Water levels on these staff gauges were recorded whenever the sites were visited during the study. The record of these levels through late October are presented in Table 1, where they are compared with the simultaneous levels of the Santa Fe River at the Highway 441 Bridge water level gauge and recorder, just downstream of Hornsby Spring (SRWMD, 2006¹).

An average of readings taken during the study indicates that the water level at Mill Creek Sink was at an elevation of about 5-6 feet higher than the water level at Hornsby Spring. These readings also showed that the Lee Sink Swallet pool water level maintained an elevation of about 30-31 feet higher than the water level at Hornsby Spring.

Dye Selection

The dyes selected for this study were rhodamine WT and fluorescein. These dyes are the most economical of all available dyes and are used routinely throughout the United States for water tracing studies. Rhodamine WT and fluorescein dyes ultimately dissipate and deteriorate in the natural environment. When these are analyzed using a synchronous scan protocol they produce separate and distinct fluorescence peaks.

Dyes for this study were supplied by Ozark Underground Laboratory (OUL) of Protem Missouri. This is also useful as OUL performed all of the sample analyses for this study. For the dye obtained from OUL, the fluorescein is a mixture of 75% dye and 25% diluent, and the rhodamine WT is a 20% solution.

A large quantity of rhodamine WT was used at O'Leno State Park during a separate and unrelated dye trace in June, 2005. It was anticipated that this dye would be flushed from the cave system and Santa Fe River by the start of this trace; the results of that trace and analyses of background samples taken after its completion indicated that this was the case.

Rhodamine WT, also called Fluorescent Red, has a color index name of Acid Red 388, and is available in liquid form. Rhodamine WT was chosen for release at Mill Creek Sink Cave. Twenty pounds of liquid in pre-measured containers were obtained from OUL.

Fluorescein, also called sodium fluorescein or uranine, has a color index name of Acid Yellow 73 and comes in a powder form. In high concentrations, this dye will appear bright green under sunlight or in a beam of artificial light. Fluorescein was selected for release at Lee Sink. Fluorescein is known to have the greatest resistance to adsorption onto inorganic materials, show up better in wells, and perform better in low flow areas. Twenty pounds of powder in pre-measured containers were obtained from OUL.

Dye Release

Both dyes were released on Tuesday, July 26, 2005 (Day Zero). See Plate 14. The first dye introduction was done at Lee Sink Swallet. The weighted end of a hose was placed on the bottom of the swallet basin, and a large funnel used at the upper end to receive the dye. Twenty pounds of pre-measured fluorescein was mixed and poured via the hose into the dye introduction point beginning at 10:06 hours. Jugs of water were used to chase residual dye from the funnel and hose used for dye introduction, with release and cleanup completed by 10:30 hours. A plume of dye was visible on the surface for a relatively short period of time, with all visible traces of the dye gone by 14:00 hours, indicating that the dye had been successfully pulled underground with the incoming water from Cellon Creek.

Twenty pounds of rhodamine WT liquid, from twenty, one-pound containers was introduced into the dye introduction tube at Mill Creek Sink at 11:34 hours. See Plate 15. A system of tygon tubing previously placed by cave divers for this purpose was used to deliver the dye to the intersection of the entrance cavern and cave passage at approximately 150 feet of depth, where the dye flowed into the downstream passage. A small pump was used to assist the introduction of the dye. Jugs of water were used to chase residual dye from the mixing bucket, pump and hose used for the dye introduction. Dye release and cleanup was completed by 12:18 hours. Residual dye remained in the tubing, but no significant amount of dye was released into the sink basin.

At both dye release sites, all containers, bags, personal protective equipment and other dyecontaminated materials were collected and sealed in trash bags for proper disposal or cleaning. A mild bleach spray was used to further eliminate any dye contamination on equipment and surfaces, and all personnel involved did not have contact with any sampling sites, devices, or samplers until they had fully bathed, changed clothing and otherwise removed all traces of any residual dye.

TABLE 2. DYE INTRODUCTION SITES L								
Mill Creek and Lee Sinks Dye Trace, Alachua County, Florida, July-December, 2005								
		GPS Coo	ordinates*					
	Station	DECIMAL	. MINUTES	Distance From:				
STATION NAME:	Number	LATITUDE	LONGITUDE	Mill Creek	Lee Sink			
				Sink				
Lee Sink Swallet	41	N 29° 46.448'	W 82° 28.413'	2.82 Miles	-			
(ridge between sink and swallet)								
Mill Creek Sink/Swallet	42	N 29° 48.079'	W 82° 30.518'	-	2.82 Miles			
(ridge between sink and swallet)								
Mill Creek Sink Cave Entrance	43	N 29° 48.079'	W 82° 30.518'	-	2.82 Miles			
Sinkhole in vicinity of "Terminal Room"	-	N 29° 47.803'	W 82° 30.542'	1750 Feet	2.64 Miles			
(Determined from in-cave radiolocation.)								
*From hand-held GPS positions taken during this study, WGS 84 Map Datum; distances are estimated from these positions.								

Sampling Procedures

Charcoal packets and water sample vials were used to sample for the presence or absence of dye. Charcoal packets, containing activated carbon, were used to accumulate dye at a sampling station through the sampling interval. Analysis of the charcoal packet indicates the presence or absence of dye during that sampling interval. The packets are especially useful for performing initial qualitative traces, if the dye is present in very small concentrations, and to monitor sites with a low sampling frequency.

Charcoal packets supplied by OUL are envelopes of fiberglass window screen about two inches by four inches in size, filled with 4.25 grams of Barneby and Sutcliffe activated coconut shell carbon, size 6 to 12 mesh. The packets are heat-sealed.

At spring sites, bricks or similar weights with a large loop of stiff wire were used to secure the charcoal packets. These allowed for maximum exposure of the packet to the water flow. These samplers were either lowered into position underwater with a length of cord, or placed directly by wading or snorkeling. Efforts taken to conceal the samplers from disturbance or vandalism were successful; very few were disturbed during the study, and two were destroyed by animals.

At water-well sample stations, water was routed through a specialized PVC packet holder that facilitated packet change-out. Water flow through the holder was controlled with a gate valve, and one-way valves that prevented backflow were used as appropriate on any public water supply. The packet holders were connected upstream of any chlorinators. Water would flow through these holders only when the pump was in operation; only two wells allowed for the use of a continuous flow. Plate 16 shows the River Ranch Well (Station 111) set up for sampling.

Whirlpak® bags were used to isolate, transport, and store charcoal packets between sample locations. Each Whirlpak® bag was labeled with the sample station number. The sample station number, location, date, and time for each sample was recorded on the Sample Collection Data Sheet. Samples were isolated from sunlight in the field to prevent photodegradation of the dye.

Water samples were collected simultaneously with each charcoal packet change-out in plastic vials supplied by OUL. Analysis of the water samples will yield the concentration of dye in that water, at that location, at that point in time.

As this was a qualitative trace, analysis of the charcoal packets took priority; the water samples collected provided a back-up for the charcoal packets.

A suitable number of background samples (both charcoal and water) were collected at each sampling station to show conditions prior to any release of dye. These were available as needed for analysis. Background samples from Hornsby Spring and the River Rise were analyzed prior to dye release, and confirmed the absence of any dye that might bias sampling results. None of the other background sampler packets were analyzed because the results of any dye-positive stations were preceded by dye-negative sampler packets collected after the dyes were released. These dye-negative samplers functioned as de-facto background samples.

All samples were shipped to OUL via Federal Express, with a Sample Collection Data Sheet that was signed and returned by OUL Staff, providing a chain of custody from KES to OUL.

Sampling Frequency and Intervals

Background sampling was typically conducted in rounds of at least one week. After dye release, samples were collected at varying intervals for each category of site. Intervals used were typically semi-weekly (twice per 7 day period) or weekly (once per seven day period). Daily sampling was used at a few selected stations early in the trace, and multi-weekly intervals were used at some locations late in the trace.

As Hornsby Spring was the primary focus of this dye trace, samplers here were collected at more frequent intervals. This included a daily sampling station, along with semi-weekly intervals at most stations in this area. The semi-weekly sampling rounds continued to about Day 60, with weekly sampling continuing past Day 90. Multi-week sampling intervals continued until Day 179, the termination of the study. The River Ranch Well (Station 111) was sampled semi-weekly though Day 31, and then weekly until Day 66. Darby Spring and the other Camp Kulaqua wells were sampled at weekly intervals beyond Day 60.

The selected vents at Poe Springs and Watermelon Spring #2 were sampled on a semi-weekly basis through Day 59. Weekly sampling then continued to Day 79. Sampling at Poe Spring Run was performed weekly from Day 15 through Day 88. The surrounding upstream and downstream Poe-area springs, and Blue Springs, were sampled on a weekly basis until Day 59.

Municipal wells at three sites were sampled on a semi-weekly basis for at least 30 days. Weekly sampling continued at these sites beyond Day 66. Private wells were sampled weekly until Day 66.

Sampling stations at the Santa Fe River Sink and Rise, and at the three river locations, were sampled on a weekly basis until Day 71.

Water sampling was performed at Mill Creek Sink to observe for the fluorescein dye released to the east at Lee Sink. The injection line used to release the rhodamine WT into the cave was pumped and sampled on a nearly daily basis until Day 24, and for two additional intervals until Day 45.

The Sample Collection Data Sheets and the OUL Certificate of Analysis sheets show the exact placement and collection times for each specific sample.

Sampling Locations

Samples were collected at the following numbered stations. See Figures 10 and 11, and Tables 3 and 4. Specific information relative to each of the sites is presented, along with the number and name assigned to them during this study.

Hornsby Spring Area (Camp Kulaqua)

1) Hornsby Spring Main: Initially, the packet holder was placed on the bottom of the spring pool to the left of the diving area and tethered with a cord attached a tree on the bank. It was later moved to the floating deck were it was suspended in mid-water by a cord.

2) Hornsby Spring Canoe Landing: This station functioned as a back-up and quality control station for Station 1. The packet holder was placed on the run bottom and tethered with a cord attached to the upstream end of the canoe launch dock.

3) Hornsby Spring Daily: Charcoal and water samples were collected here at least once per day during the first eighteen days of the trace. The packet holder was suspended in mid-water from the floating dock by a cord.

4) Darby Spring: The packet holder was lowered into the entrance of the cave and tethered with a cord attached to the bank. This station was serviced by snorkeling.

5) Hornsby Spring South: This station was established after the trace began to monitor any differences in the south cave entrance. The packet holder was placed on the spring pool bottom in the south cave entrance, and tethered with a cord attached to the deck.

Poe Springs Area

11) Poe Spring (Shallow Vent): The packet holder was placed inside of a small, shallow vent on the east side of the spring pool. It was hidden from view, and not tethered. This station was serviced by snorkeling.

12) Poe Spring (Gauge Vent): Analysis of samples collected at this spring was contingent on the results of the Poe Springs Shallow Vent or Run. The packet holder was placed inside of a vent in front of the water level recorder on the west side of the spring pool. It was hidden from view, and not tethered. This station was serviced by snorkeling.

13) Watermelon Spring #2: Analysis of samples collected at this spring was contingent on the results of Poe Springs. The packet holder was placed inside of a vent on the bottom of the river. It was hidden from view, and not tethered. This station was serviced by snorkeling.

17) Poe Spring Run: This station was established after the trace began to provide better collective monitoring of the Poe Springs vents. The packet holder was wired to the base of a sign on the east side of the lower end of the spring run. This station was serviced by snorkeling and wading.

14) Fenceline Spring: Analysis of samples collected at this spring was contingent on the results of Poe Springs. The packet holder was placed on the spring vent bottom and tethered with a cord attached to a tree trunk in the river. This station was serviced by watercraft.

15) "The Crack" Spring: Analysis of samples collected at this spring was contingent on the results of Poe Springs. The packet holder was placed on a ledge on the north wall of this vertical fissure. This station was serviced by watercraft and snorkeling.

16) Twin Cypress Spring: Analysis of samples collected at this spring was contingent on the results of Poe Springs. The packet holder was placed on the spring vent bottom and tethered with a cord attached to a tree on the bank. This station was serviced by watercraft.

TABLE 3. SAMPLING STATION LOCATIONS and DISTANCES.											
Mill Creek and Lee Sinks Dye Trace, Alachua County, Florida, July-December, 2005											
						Santa Fe					
		GPS Coo	ordinates*			River					
	Station	DECIMAL	. MINUTES	Distance (In Miles) From:		Bank Side		SRWMD			
SAMPLING STATION NAME:	Number	LATITUDE	LONGITUDE	Mill Creek Sink	Lee Sink	Position	County	Name/Number			
Hornsby Spring Main	1	N 20º 51 022	\N/ 92º 25 597'	6.00	8.0	Loft	Alachua	Horneby			
Hornsby Spring Run(Canoo Launch)	2	N 29 51.023	W 92° 35.307	6.13	8.04	Leit	Alachua	Hornsby			
Hornsby Spring Run(Canoe Launch)	2	N 29 51.025	W 02 33.033	0.13	0.94	Leit	Alachua	Homsby			
Borby Spring Daily	4	N 29° 51.016	VV 82° 35.592	6.09	8.9	Leit	Alachua	Homsby			
Darby Spring	3	N 29° 51.147	VV 82° 36.360	6.82	9.61	Left	Alachua	Darby			
Hornsby Spring South	5	N 29° 51.008	VV 82° 35.602	6.09	8.9	Left	Alachua	Hornsby			
POE SPRINGS AREA											
Poe Spring (Shallow Vent)	11	N 29° 49.553'	W 82° 38.935'	8.58	11.11	Left	Alachua	Poe			
Poe Spring (Gauge Vent)	12	N 29° 49.546'	W 82° 38.941'	8.58	11.11	Left	Alachua	Poe			
Watermelon #2 Spring (in river)	13	N 29° 49.544'	W 82° 39.022'	8.65	11.17	Left	Alachua	Not Listed			
Poe Spring Run	17	N 29° 49.564'	W 82° 38.961'	n/a	n/a	Left	Alachua	n/a			
Fenceline Spring	14	N 29° 49.676'	W 82° 38.455'	8.14	10.7	Left	Alachua	ALA930971			
"The Crack" Spring	15	N 29° 49.643'	W 82° 38.756'	8.44	10.97	Right	Columbia	COL 428982			
Twin Cypress Spring	16	N 29° 49.625'	W 82° 38.838'	8.51	11.05	Right	Columbia	Not Listed			
SANTA FE RIVER SITES											
Santa Fe River Sink	21	N 29° 54.840'	W 82° 34.758'	8.57	11.25	Right	Columbia	n/a			
Santa Fe River Rise	22	N 29° 52.434'	W 82° 35.462'	7.06	9.88	Left	Columbia	Santa Fe Rise			
Santa Fe River D/S of Poe	23	N 29° 49.588'	W 82° 39.206'	n/a	n/a	Left	Alachua	n/a			
Santa Fe River at 27 Bridge	24	N 29° 50.614'	W 82° 37.856'	n/a	n/a	Right	Columbia	n/a			
Santa Fe River at 441 Bridge	25	N 29° 51.158'	W 82° 36.549'	n/a	n/a	Left	Alachua	n/a			
OTHER SPRINGS/EFATURES											
Lilly Spring	31	N 29° 49 780'	W 82° 39 674'	9 36	11.89	l eft	Gilchrist	Lilly			
Pickard Spring	32	N 29° 49 821'	W 82° 39 707'	9.4	11.94	Left	Gilchrist	Pickard			
Gilchrist Blue Spring	33	N 29° 49.818'	W 82° 40.948'	10.64	13.14	Left	Gilchrist	Gilchrist Blue			
Seven Sisters Springs	(34)	N 29° 49.883'	W 82° 39.376'	9.09	11.65	Right	Columbia	COL930971			
Seven Sisters Run at Santa Fe River	34	N 29° 49.809'	W 82° 39.443'	n/a	n/a	Right	Columbia	COL930971			
*From hand-held GPS positions taken during this s	tudy, WGS 84	Map Datum; distand	ces are estimated from	n these positions.							
TABLE 4. WELL SAMPLING STATION LOCATIONS and DISTANCES.											
---	---------------	---------------------------	----------------------	----------------------	------------	-----------	-----------	-------------	--	--	--
Mill Creek and Lee Sinks Dye Trace,	Alachua C	ounty, Florida,									
		GPS Coo	rdinates**	Approximate I	Distance	Well	Casing	Well			
	Station	DECIMAL	MINUTES	(in miles) of sta	tion from:	Depth	Depth	Diameter			
WELL SAMPLING STATION NAME:	Number	LATITUDE	LONGITUDE	Mill Creek Sink	Lee Sink	(In Feet)	(In Feet)	(In Inches)			
Municipal Wells											
High Springs # 1 (West Well)	101	N 29° 48.831'	W 82° 34.155'	3.74	6.36	250	110	12			
High Springs # 2 (East Well)	102	N 29° 48.818'	W 82° 34.119'	3.7	6.32	250	120	12			
Alachua Well #1	103	N 29° 47.544'	W 82° 29.307'	1.37	1.55	220	95*	12			
Alachua Well #2	104	N 29° 47.580'	W 82° 29.485'	1.18	1.69	<220*	unknown	12			
Alachua Well #3	105	N 29° 47.596'	W 82° 29.460'	1.2	1.69	<220*	unknown	12			
Santa Fe Hills Subdivision	106	N 29° 48.533'	W 82° 31.673'	1.27	4.05	238	unknown	8			
System Well											
Camp Kulagua Wells											
River Ranch Well	111	N 29° 50.985'	W 82° 35.128'	5.69	8.5	165	113	6			
Main Shop Well	112	N 29° 51.129'	W 82° 35.626'	6.19	9	120*	68*	6			
Residence 6 Well	113	N 29° 50.887'	W 82° 35.497'	5.93	8.73	120*	100*	4			
Chalet Well	114	N 29° 50.893'	W 82° 35.560'	5.99	8.79	100*	80*	4			
Private Wells											
Copeland Well	121	N 29° 49.618'	W 82° 31.914'	2.25	5.05	205*	105*	4			
Tropic Traditions Well	122	N 29° 47.522'	W 82° 33.481'	3.03	5.21	175	105	6			
Progress Center Well (1)	123	N 29° 46.912'	W 82° 28.309'	2.59	2860 feet	unknown	unknown	unknown			
Notes: All sites located in Alachua County.											
* Best estimate based on available records; may	not be accura	ate. 84 Man Datum: die	tances are estimated	from these positions							
(1) System tap used; well was not located.	5 Study, 1700	o - Map Datum, uis									

Sampling Stations and Dye Introduction Sites Map.

Dye Trace: Mill Creek/Lee Sinks, July-December, 2005

Sampling Stations Map, Hornsby Spring Area.

Santa Fe River Sites

21) Santa Fe River Sink: Analysis of samples collected at this station was contingent on any ambiguous results that would occur downstream. The packet holder was placed on the river bottom and tethered with a cord attached to a floating dock or tree on the bank.

22) Santa Fe River Rise: The packet holder was placed on the river bottom and tethered with a cord attached to a tree along the riverbank.

23) Santa Fe River Downstream of Poe Spring: Analysis of samples collected at this location was contingent on the results of the various springs. The packet holder was placed on the river bottom and tethered with a cord attached to a floating dock.

24) Santa Fe River at Hwy 27 Bridge: Analysis of samples collected at this location was contingent on the results of the various springs. The packet holder was placed on the river bottom and tethered with a cord attached to exposed roots along the riverbank. This station was serviced by wading.

25) Santa Fe River at Hwy 441 Bridge: Analysis of samples collected at this location was contingent on the results of the various springs. The packet holder was placed on the river bottom and tethered with a cord attached to a floating dock.

Other Springs and Features

31) Lilly Spring: Analysis of samples collected at this spring was contingent on the results of Poe Springs. The packet holder was placed into one of the main vents in the head pool and tethered to the bank with a cord. This station was serviced by watercraft.

32) Pickard Spring: Analysis of samples collected at this spring was contingent on the results of Poe Springs. The packet holder was placed into a vent in the spring basin and tethered to the bank with a cord. This station was serviced by watercraft.

33) Blue Spring (Gilchrist County): Analysis of samples collected at this spring was contingent on the results of Poe Springs. The packet holder was placed into the spring run and tethered to the boardwalk with a cord.

34) Seven Sisters Spring Run: Analysis of samples collected at this spring was contingent on the results of Poe Springs. The packets were attached to a wire loop around roots on the right bank of the spring run, just upstream of the Santa Fe River. This station was serviced by watercraft and wading.

41) Lee Sink Swallet: Analysis of samples collected at this station would be contingent on any ambiguous results, should any occur downstream. The packet holder was placed in the swallet pool and tethered to the bank with a cord.

42) Mill Creek Sink Swallet: Analysis of samples collected at this station would be contingent on any ambiguous results, should any occur downstream. The packet holder was placed in the creek above the swallet and tethered to the bank with a cord. Municipal Wells

101) High Springs #1 (West Well): This was selected as the primary sampling well. Packets were placed in a flow-through packet holder with the appropriate connections and fittings. Water usage was recorded by High Springs Department of Public Works.

102) High Springs #2 (East Well): Analysis of samples collected at this well was contingent on the results of High Springs #1 (101). Packets were placed in a flow-through packet holder with the appropriate connections and fittings. Water usage was recorded by High Springs Department of Public Works.

103) Alachua Well #1: Analysis of samples collected at this well was contingent on the results of Alachua Well #2 (104). Packets were placed in a flow-through packet holder with the appropriate connections and fittings. Water usage was recorded by High Springs Department of Public Works.

104) Alachua Well #2: This was selected as the primary sampling well. Packets were placed in a flow-through packet holder with the appropriate connections and fittings. Water usage was recorded by Alachua Department of Public Works.

105) Alachua Well #3: Analysis of samples collected at this well was contingent on the results of Alachua Well #2 (104). Packets were placed in a flow-through packet holder with the appropriate connections and fittings. Water usage was recorded by Alachua Department of Public Works.

106) Santa Fe Hills Subdivision Well (South Well): This well was selected as it was the well operating in rotation when the study began, and because of ease of hookup. Packets were placed in a flow-through packet holder with the appropriate connections and fittings. A water meter log was maintained by KES during the study.

Camp Kulaqua Wells

111) River Ranch Well: Packets were placed in a flow-through packet holder with the appropriate connections and fittings. A water meter log was maintained by KES during the study.

112) Main Shop Well: Packets were placed in a flow-through packet holder with the appropriate connections and fittings. A water meter log was maintained by KES during the study.

113) Residence #6 Well: Packets were placed in a flow-through packet holder with the appropriate connections and fittings. No water meter was available.

114) Chalet Well: Packets were placed in a flow-through packet holder with the appropriate connections and fittings. A water meter log was maintained by KES during the study.

Other Private Wells

121) Copeland Well: Packets were placed in a flow-through packet holder with the appropriate connections and fittings. No water meter was available.

122) Tropic Traditions Well: Packets were placed in a flow-through packet holder with the appropriate connections and fittings. No water meter was available.

123) Progress Center Well: The actual location of the well was never identified. Only water samples were collected here from a system bib. No water meter was available.

Sampling Inventory

A total of 918 samples were collected and logged during this study. Of this total, 533 were charcoal sampler packets and 385 were water samples.

A total of 158 charcoal samplers were analyzed. Two of these were background samples. Of these 156 samplers, a total of 51 tested positive for rhodamine WT, of which 26 tested also tested positive for fluorescein.

A total of 36 water samples were analyzed. All of these were samples where the associated charcoal sample had tested positive for dye. Of these 36 samplers, a total of nine tested positive for rhodamine WT. None tested positive for fluorescein. An additional ten samples taken at the Mill Creek Sink Cave (Station 43) tested positive for rhodamine WT; this was expected as it was the release point for that dye. The target dye there was fluorescein.

Duplicate Samples

Duplicate samples were collected from selected sites, and stored in case of shipping losses or to be analyzed in the case of ambiguous results.

Selection Rationale for Sample Analysis

This study was an initial qualitative dye trace attempting to identify as many connections as possible with the two dye release sites. There were many springs and wells that had potential for dye recovery. With dye travel rates unknown, this meant planning for a large number of samples. However, there were budget limitations governing the number of samples that could be analyzed within the scope of this study.

Therefore, strategies were designed to allow for a maximum return of information from the finite number of laboratory analyses that could be performed, without jeopardizing the study's goals. These strategies included the measures described below to provide economy while maintaining effectiveness.

Except for a few initial background sample analyses, background samples were held pending analyses of post-dye release samples. Typically, stations with positive dye results had pre-arrival samples analyzed so as to function as de-facto background samples.

Samples from stations on the Santa Fe River (23, 24 and 25) were held pending any negative results at the springs; the positive results at Hornsby Spring ultimately made all river samples redundant for the purposes of this qualitative trace. Also, as there were no anomalies seen in the samples analyzed from the River Rise (22), none of the River Swallet (21) samples collected were analyzed.

Poe Spring was selected as the primary indicator for dye arrival within the Poe Springs area group of springs. Selected vents and the run were monitored at Poe Spring, but all samples collected from Fenceline Spring downstream to Blue Spring were held pending the identification of dye at Poe. As the presence of dye was never confirmed there, the focus for analyses was shifted to the Hornsby Spring area.

Finally, at the Cities of Alachua and High Springs municipal wells, one well was selected from each group for consecutive analyses. Any positive result at these wells would have prompted the systematic analyses of the adjacent wells.

Sample Analysis

All samples were analyzed using a synchronous scan protocol on a spectrofluorophotometer at Ozark Underground Laboratory. The recovery of dye in concentrations high enough to provide a visual result was not anticipated, and no evaluations of that type were performed.

Charcoal packets collect dye by adsorbing it to the charcoal particles; therefore, prior to sample analysis the dye must be released from the charcoal. This process is known as elution. An eluent is added to the charcoal and the resulting elutant can be analyzed via "direct injection" by a spectrofluorophotometer.

A Shimadzu RF 5000U Spectrofluorophotometer operated with a synchronous scan protocol was used to analyze all samples recovered during this study. The detection limit for rhodamine WT in elutant is 0.155 part per billion, with a normal acceptable emission wavelength range of 561.7 to 568.9 nanometers. The detection limit for rhodamine WT in water is 0.007 parts per billion, with a normal acceptable emission wavelength range of 569.4 to 574.8 nanometers.

The detection limit of this instrument for fluorescein in elutant is 0.01 part per billion, with a normal acceptable emission wavelength range of 510.7 to 515.0 nanometer. The detection limit for fluorescein in water is 0.0005 parts per billion, with a normal acceptable emission wavelength range of 505.6 to 510.5 nanometers.

Results of analyses were presented by OUL as Certificates of Analysis that include a Summary of Results Table and graphs for each sample analyzed. The Certificates of Analysis and Summary of Results Table are found in Appendix IIA. The graphs for the analyses of charcoal packets are presented in Appendix IIB, and for water samples in Appendix IIC..

The results of analyses as interpreted by OUL are used as the basis for the discussion and conclusions reached in this report.

RESULTS

This study is the first fully documented dye trace performed at Mill Creek and Lee Sinks. As this was an initial qualitative dye trace, sampling periods were designed to measure a potential rapid arrival time of the dye. A dye trace was reportedly performed in this area in early 1976 but documentation is incomplete. The arrival time in that investigation was one day (Fisk and Exley, 1976).

Municipal wells near to the dye introduction sites were of special concern. The wells had the potential for a rapid and strong arrival of dye. The wells were closely monitored and there were no visible detections of dye in the municipal wells.

Results of Spectrofluorophotometer Analysis

One-hundred and fifty-eight (158) charcoal samplers and 36 water samples from selected sampling stations were analyzed. Table 5 provides a summary of the results of analysis from dye-positive stations. The numbered days in Table 5 are sequential from the day of dye introduction, Day Zero. The maps in Figures 12 and 13 show the positive results at sampling stations. Figures 14, 15 and 16 provide examples of spectrofluorophotometer analytical graphics indicating positive detections of rhodamine WT and fluorescein. Descriptions of the results from dye-positive stations are included below. Station groupings with positive results are discussed first.

The Certificates of Analysis from OUL listing the results of these analyses are presented in Appendix IIA. A complete record of all analytical graphs is included in Appendixes IIB and IIC.

The asterix (*) symbol is used in the descriptions below and in Table 5 to indicate the presence of a fluorescence peak that does not meet all the criteria for a positive dye result, but has been calculated as though it were dye.

Hornsby Spring Area Springs (Camp Kulaqua)

1) Hornsby Spring Main: No dye was detected in analyzed samples collected through August 7 (Day 12). Rhodamine WT was initially detected at a concentration of 14.4 ppb in the August 7-10 (Days 12-15) packet. During the next four semi-weekly sampling intervals, from Day 15 through Day 28 (August 23), the rhodamine WT concentration increased, with the highest concentration of 54.2 ppb being detected in the Day 24-28 packet.

Fluorescein was initially detected at a concentration of 1.48 ppb in the August 23-26 (Days 28-31) packet, with rhodamine WT also present at 24.8 ppb. During the next eight semi-weekly sampling intervals, from Day 31 through Day 59 (September 23), the fluorescein concentration increased, with the highest concentration of 4.85 ppb being detected in the Day 55-59 packet. Figure 14 shows the detection of both dyes in the analytical results of the Days 38-42 packet. Strong, but decreasing concentrations of rhodamine WT were also detected during this period.

After September 23 (Day 59) sampling intervals were changed from semi-weekly to weekly. Concentrations for both dyes were detected in generally decreasing amounts. After October 28 (Day 94) sampling intervals were changed to bi-weekly. Concentrations for both dyes continued to be detected in generally decreasing amounts. The final two intervals analyzed, Days 125-139 and Days 139-154, showed detections for both dyes that yielded fluorescence peaks that did not meet all the criteria for a positive dye result, but were calculated as though they were dye. The detections of dye for the final interval (Days 139-154) were 5.77 ppb * rhodamine WT and 3.17 ppb* fluorescein.

2) Hornsby Spring Canoe Landing: No dye was detected in analyzed samples collected through August 7 (Day 12). Rhodamine WT was initially detected at a concentration of 13.3 ppb in the August 7-10 (Days 12-15) packet. During the next two semi-weekly sampling intervals, from Day 15 through Day 21 (August 16), the rhodamine WT concentration increased, with the highest concentration of 38.4 ppb being detected in the Day 15-18 packet. The Day 21-24 interval was not analyzed. The remaining three sampling intervals analyzed (Days 24-34) showed a decrease in the rhodamine WT concentration. No fluorescein was detected in the samples analyzed from this station.

3) Darby Spring: No dye was detected in analyzed samples collected through August 15 (Day 20). Rhodamine WT was initially detected at a concentration of 2.27 ppb* in the August 15-19 (Days 20-24) packet. No dye was detected in the August 19-26 (Days 24-31) packet. During the next four weekly sampling intervals, from Day 31 through Day 59 (September 23), rhodamine WT was detected, with the highest concentration of 2.93 ppb being detected in the Day 31-38 packet.

4) Hornsby Spring Daily: No dye was detected in analyzed samples collected through August 7 (Day 12). Rhodamine WT was initially detected at a concentration of 4.35 ppb in the August 7-8 (Days 12-13) packet. That increased to 6.28 ppb in the August 8-9 (Days 13-14) packet. The final sample analyzed here showed a detection of 12.1 ppb in the August 9-10 (Days 14-15) packet. The results from this station provide the most accurate indication that dye arrived here at some time on Day 12 or 13.

The initial water sample that showed a positive detection for rhodamine WT was taken on August 10 (Day 15), with a concentration of 0.093 ppb. Results of the next three daily consecutive samples showed an increase in dye concentration. Figure 15 shows the detection of rhodamine WT in the analytical results of the Day 16 sample. Additional water samples were analyzed for the period of time when fluorescein arrival was confirmed in the charcoal samplers; no fluorescein was detected. A final rhodamine WT detection of 0.165 ppb* was made on August 26 (Day 31). Four additional water samples were collected and analyzed with no dye being detected. The final water sample analyzed was collected on September 9 (Day 45).

5) Hornsby Spring South: Three samples were analyzed, and all showed the presence of both dyes. Rhodamine WT was detected at the highest concentrations here of 34.5 ppb, and fluorescein at 3.26 ppb, in the August 26-September 2 (Days 31-38) packet. Concentrations for both dyes decreased in the following two samples, with final rhodamine WT and fluorescein detections of 4.31 ppb* and 1.41 ppb, respectively, being made in the September 9-15 (Day 45-51) packet.

Camp Kulaqua Wells

111) River Ranch Well: No dye was detected in samples collected through August 7 (Day 12). Rhodamine WT was initially detected at a concentration of 15.4 ppb in the August 7-10 (Days

TABLE 5. RESULTS OF DYE-POSITIVE SAMPLING STATIONS								1 of 3)						
Mill Creel	k and Lee Sinks Dye Tr													
		Lee Sink Dye (fluorescein) Release:							7/26/2005		10:06 - 10:30			
	Day 0 = July 26, 20	005	Mill Creek Sink Dye (rhodamine WT) Re					Release:			7/26/2005		11:34 - 12:18	
	DAY #:	3	6	9	10	11	12	13	14	15	16	17	18	20
	DATE:	29-Jul	1-Aug	4-Aug	5-Aug	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug	11-Aug	12-Aug	13-Aug	15-Aug
Station #	Station Name:	Friday	Monday	Thurs.	Friday	Sat.	Sun.	Monday	Tues.	Wed.	Thurs.	Friday	Sat.	Monday
1	Hornsby Spring Main;	ND	ND	ND	-	-	ND	-	-	14.4	-	-	37.2	-
	Charcoal	ND	ND	ND	-	-	ND	-	-	ND	-	-	ND	-
2	Hornsby Spring Run;	ND	ND	ND	-	-	ND	-	-	13.3	-	-	38.4	-
	Charcoal	ND	ND	ND	-	-	ND	-	-	ND	-	-	ND	-
3	Darby Spring;	-		-	-	-		-	-	-	-	-	-	
	Charcoal	-		-	-	-		-	-	-	-	-	-	
4	Hornsby Spring Daily;	na	na	na	na	ND	ND	4.35	6.28	12.1	na	na	na	na
	Charcoal	na	na	na	na	ND	ND	ND	ND	ND	na	na	na	na
4	Hornsby Spring Daily;	na	na	ND	ND	ND	ND	ND	ND	0.093	0.209	0.198	0.247	na
	Water	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na
5	Hornsby Spring South;	-	-	-	-	-	-	-	-	-	-	-	-	-
	Charcoal	-	-	-	-	-	-	-	-	-	-	-	-	-
106	Santa Fe Hill Subdv.	ND	ND	na	-	-	ND	-	-	ND	-	-	ND	-
	System Well; Charcoal	ND	ND	na	-	-	ND	-	-	ND	-	-	ND	-
111	Camp Kulaqua River	na	na	ND	-	-	ND	-	-	15.4	-	-	-	71.1
	Ranch Well; Charcoal	na	na	ND	-	-	ND	-	-	ND	-	-	-	ND
111	Camp Kulaqua River	na	na	na	-	-	ND	-	-	0.201	-	-	-	na
	Ranch Well; Water	na	na	na	-	-	ND	-	-	ND	-	-	-	na
	DAY #:	3	6	9	10	11	12	13	14	15	16	17	18	20
Notes:	Rhodamine WT =	Top value	, in red.			ND = No Detection (of dye)			L					
	Fluorescein =	brescein = Bottom value, in green italic.					not analyz	zed						
	*Indicates the presence of a	fluorescenc	e peak that o	does not mee	et all the crit	eria for a po	ositive dye r	esult, but ha	ve been ca	culated as th	ough it were	dye.		·
	Only stations that had positiv													

TABLE 5. RESULTS OF DYE-POSITIVE SAMPLING STATIONS (PAGE 2 d)													
Mill Creek and Lee Sinks Dye Trace, Alachua County, Florida, July-December, 2005													
	DAY #:	21	24	28	31	32	34	38	42	45	48	51	52
	DATE:	16-Aug	19-Aug	23-Aug	26-Aug	27-Aug	29-Aug	2-Sep	6-Sep	9-Sep	12-Sep	15-Sep	16-Sep
Station #	Station Name:	Tues.	Friday	Tues.	Friday	Sat.	Monday	Friday	Tuesday	Friday	Monday	Thurs.	Friday
1	Hornsby Spring Main;	27.9	30	54.2	24.8	-	21.2	27.7	18.1	7.29	8.24	5.9	-
	Charcoal	ND	ND	ND	1.48*	-	1.91	3.36	4.09	2.24	2.83	3.13	-
2	Hornsby Spring Run;	30.3	-	34.8	14.3	-	14.8	-	-	-	-	-	-
	Charcoal	ND	-	ND	ND	-	ND	-	-	-	-	-	-
3	Darby Spring;	-	2.27*	-	ND	-	-	2.93	-	2.5	-	1.84*	-
	Charcoal	-	ND	-	ND	-	-	ND	-	ND	-	ND	-
4	Hornsby Spring Daily;	na	na	na	na	-	na	na	na	na	-	na	-
	Charcoal	na	na	na	na	-	na	na	na	na	-	na	-
4	Hornsby Spring Daily;	na	0.199	0.128*	0.165*	-	ND	ND	ND	ND	-	-	-
	Water	na	ND	ND	ND	-	ND	ND	ND	ND	-	-	-
5	Hornsby Spring South;	-	-	-	-	-	-	34.5	-	14.3	-	4.31*	-
	Charcoal	-	-	-	-	-	-	3.26	-	2.55	-	1.41	-
106	Santa Fe Hill Subdv.	ND	ND	2.49	-	ND	-	2.71	-	ND	-	-	ND
	System Well; Charcoal	ND	ND	ND	-	ND	-	ND	-	ND	-	-	ND
111	Camp Kulaqua River	-	47.3	30.4	15.3	-	-	42.4	-	21	-	7.98	-
	Ranch Well; Charcoal	-	ND	ND	0.824*	-	-	3.43	-	2.94	-	1.88	-
111	Camp Kulaqua River	-	na	na	0.145	-	_	ND	-	ND	-	na	-
	Ranch Well; Water	-	na	na	ND	-	-	ND	-	ND	-	na	-
	DAY #:	21	24	28	31	32	34	38	42	45	48	51	52
Notes:	Rhodamine WT =	Top value,	in red.			ND =	No Detect	ion (of dye)					
	Fluorescein =	Bottom value, in green italic. na = not analy											
	*Indicates the presence of a	a fluorescenc	e peak that o	does not mee	et all the criter	ia for a posit	ive dye resul	t, but have	been calcula	ated as the	ugh it were o	lye.	
	Only station that had positiv	e recoveries	of dye are ir										

TABLE 5.	. RESULTS OF DYE-P			(PAGE 3	of 3)								
Mill Creel	k and Lee Sinks Dye T	race, Ala	chua Cou	nty, Flori	da, July-D)ecembe	r, 2005						
	DAY #:	55	57	59	66	73	79	86	94	111	125	139	154
	DATE:	19-Sep	21-Sep	23-Sep	30-Sep	7-Oct	13-Oct	20-Oct	28-Oct	14-Nov	28-Nov	12-Dec	27-Dec
Station #	Station Name:	Monday	Wed.	Friday	Friday	Friday	Thurs.	Thurs.	Friday	Monday	Monday	Monday	Tuesday
1	Hornsby Spring Main;	5.91	-	9.54	11	8.04	4.15	5.65	3.75	5.17	6.72	5.31*	5.77*
	Charcoal	3.32	-	4.85	4.61	4.28	2.32	3.11	2.09	2.74*	3.10*	2.75*	3.17*
2	Hornsby Spring Run;	-	-	-	-	-	-	-	-	-	-	-	-
	Charcoal	-	-	-	-	-	-	-	-	-	-	-	-
3	Darby Spring;	-	-	2.22*	-	-	-	-	-	-	-	-	-
	Charcoal	-	-	ND	-	-	-	-	-	-	-	-	-
4	Hornsby Spring Daily;	-	-	na	na	na	na	na	na	-	-	-	-
	Charcoal	-	-	na	na	na	na	na	na	-	-	-	-
4	Hornsby Spring Daily;	-	-	-	-	-	-	-	-	-	-	-	-
	Water	-	-	-	-	-	-	-	-	-	-	-	-
5	Hornsby Spring South;	-	-	-	na	na	na	na	na	-	-	-	-
	Charcoal	-	-	-	na	na	na	na	na	-	-	-	-
106	Santa Fe Hill Subdv.	-	ND	-	na	-	-	-	-	-	-	-	-
	System Well; Charcoal	-	ND	-	na	-	-	-	-	-	-	-	-
111	Camp Kulaqua River	-	-	na	11.2	-	-	-	-	-	-	-	-
	Ranch Well; Charcoal	-	-	na	3.51	-	-	-	-	-	-	-	-
111	Camp Kulaqua River	-	-	na	na	-	-	-	-	-	-	-	-
	Ranch Well; Water	-	-	na	na	-	-	-	-	-	-	-	-
	DAY #:	55	57	59	66	73	79	86	94	111	125	139	154
Notes:	Rhodamine WT =	ne WT = Top value, in red. ND =										1	
	Fluorescein =	Bottom val	ue, in green	italic.		na =	not analyzed						
	*Indicates the presence of a	afluorescend	e peak that	does not me	et all the crite	eria for a po	sitive dye resu	lt, but have b	peen calculat	ed as though	n it were dye		
	Only station that had positiv	e recoveries	of dye are i	ncluded in th	is table.								

Sampling Stations Results Map Dye Trace: Mill Creek/Lee Sinks, July-December, 2005

Sampling Stations Results Map; Hornsby Spring Area.

Figure 14. Example of Spectrofluorophotometer Analytical Graph. This graph indicates a positive detection for rhodamine WT and fluorescein dyes from a charcoal sampler placed at Hornsby Spring. The wavelength peak indicates the specific dyes present, and the fluorescence magnitude is used to calculate concentration in the sample.

Figure 15. Example of Spectrofluorophotometer Analytical Graph. This graph indicates a positive detection for rhodamine WT dye from a water sample taken at Hornsby Spring. The wavelength peak indicates the specific dye present, and the fluorescence magnitude is used to calculate concentration in the sample.

Figure 16. Example of Spectrofluorophotometer Analytical Graph. This graph indicates a positive detection for rhodamine WT and fluorescein dyes from a charcoal sampler placed at the Camp Kulaqua River Ranch Well. The wavelength peak indicates the specific dyes present, and the fluorescence magnitude is used to calculate concentration in the sample.

12-15) packet. The next semi-weekly sampling interval, Days 15-20, had the highest rhodamine WT concentration recorded here of 71.1 ppb. (This was a slightly longer than usual five-day sampling interval.) During the next three semi-weekly sampling intervals, from Day 20 through Day 31 (August 26), the rhodamine WT concentration decreased.

Fluorescein was initially detected at a concentration of 0.824 ppb* in the August 23-26 (Days 28-31) packet, with rhodamine WT also present at 15.3 ppb. The next weekly sampling interval, Days 31-38, had a fluorescein detection of 3.43 ppb. Figure 16 shows this detection along with that for rhodamine WT in the analytical results of that packet.

After August 26 (Day 31) sampling intervals were changed from semi-weekly to weekly. Concentrations for both dyes were detected in generally decreasing amounts. The dye concentrations in the final interval analyzed, Days 59-66, showed a detection of rhodamine WT of 11.2 ppb and fluorescein of 3.51 ppb (the highest detection here of fluorescein).

The initial water sample that showed a positive detection for rhodamine WT was taken on August 10 (Day 15), with a concentration of 0.201 ppb. The last detection of rhodamine WT was made on August 26 (Day 31) at 0.145 ppb. This water sample, along with the following two, were analyzed for the period of time when fluorescein arrival was confirmed in the charcoal samplers; no fluorescein was detected. The final water sample analyzed was collected on September 3 (Day 66), with no dye being detected.

This well typically pumped an average of 25,000 gallons per day during August and September. Total water pumped for August was over 830,000 gallons, and approximately 600,000 gallons for September.

112) Main Shop Well: No dye was detected in the samples analyzed.

113) Residence #6 Well: No dye was detected in the samples analyzed.

114) Chalet Well: No dye was detected in the samples analyzed.

Municipal Wells

101) High Springs #1 (West Well): No dye was detected in the samples analyzed. This water system (Wells 1 and 2) typically pumped an average of 460,000 gallons per day (MGD) during the July, August, September and October. Total water pumped for August was 13.640 million gallons, 14.02 million gallons for September and 14.111 million gallons for October (HSDPW, 2006).

102) High Springs #2 (East Well): All samples were held pending positive analyses results at Station 101.

103) Alachua Well #1: No dye was detected in the samples analyzed. Remaining samples were held pending positive analyses results at Station 104.

104) Alachua Well #2: No dye was detected in the samples analyzed.

This water system (Wells 1, 2 and 3) typically pumped an average of 1.3 million gallons per day (MGD) during the July, August and September, and 1.25 MGD for October. Total water pumped for August was 41.463 million gallons, 40.864 million gallons for September and 38.792 million gallons for October (ADPW, 2006).

105) Alachua Well #3: All samples were held pending positive analyses results at Station 104.

106) Santa Fe Hills Subdivision Well (South Well): No dye was detected in samples collected through August 19 (Day 24). Rhodamine WT was initially detected at a concentration of 2.49 ppb in the August 19-23 (Days 24-28) packet. No dye was detected for the next semi-weekly interval, Days 28-32. A detection of 2.71 ppb* was made during the next sampling interval, Days 32-38 (August 27-September 2). No dye was detected in the three weekly samplers that followed Day 38. No detections of fluorescein were made at this well.

A water sample was collected from a tap supplying treated water from this system on September 21 (Day 57); no dye was detected.

This well typically pumped between 11,000 to 14,000 gallons per day during August and September. Total water pumped for August was over 400,000 gallons, and approximately 350,000 gallons for September.

Poe Springs Area Springs

11) Poe Spring (Shallow Vent): No dye was detected in the samples analyzed.

12) Poe Spring (Gauge Vent): No dye was detected in the samples analyzed. Remaining samples were held pending positive analyses results at Poe Spring.

13) Watermelon Spring #2: All samples were held pending positive analyses results at Poe Spring. As no dye was detected at Poe Spring, no samples from this station were analyzed.

17) Poe Spring Run: No dye was detected in the samples analyzed.

14) Fenceline Spring: No dye was detected in the samples analyzed. Remaining samples were held pending positive analyses results at Poe Spring.

15) "The Crack" Spring: All samples were held pending positive analyses results at Poe Spring. As no dye was detected at Poe Spring, no samples from this station were analyzed.

16) Twin Cypress Spring: All samples were held pending positive analyses results at Poe Spring. As no dye was detected at Poe Spring, no samples from this station were analyzed.

Santa Fe River Sites

21) Santa Fe River Sink: All samples were held pending any anomalous positive results found in downstream stations. As no anomalous results were seen, no samples from this station were analyzed.

22) Santa Fe River Rise: No dye was detected in the samples analyzed.

23) Santa Fe River Downstream of Poe Spring: All samples were held pending any negative results in all upstream stations. As both dyes were detected at, and discharged by, Hornsby Spring, no samples from this station were analyzed.

24) Santa Fe River at Hwy 27 Bridge: All samples were held pending any negative results in all upstream stations. As both dyes were detected at, and discharged by, Hornsby Spring, no samples from this station were analyzed.

25) Santa Fe River at Hwy 441 Bridge: All samples were held pending any negative results in all upstream stations. As both dyes were detected at, and discharged by, Hornsby Spring, no samples from this station were analyzed.

Other Springs and Features

31) Lilly Spring: All samples were held pending positive analyses results at Poe Spring. As no dye was detected at Poe Spring, no samples from this station were analyzed.

32) Pickard Spring: All samples were held pending positive analyses results at Poe Spring. As no dye was detected at Poe Spring, no samples from this station were analyzed.

33) Blue Spring (Gilchrist County): All samples were held pending positive analyses results at Poe Spring. As no dye was detected at Poe Spring, no samples from this station were analyzed.

34) Seven Sisters Spring Run: All samples were held pending positive analyses results at Poe Spring. As no dye was detected at Poe Spring, no samples from this station were analyzed.

41) Lee Sink Swallet (Cellon Creek Inflow): All samples were held pending any anomalous positive results found in down-gradient stations. As no anomalous results were seen, no samples from this station were analyzed.

42) Mill Creek Sink Swallet (Mill Creek Inflow): All samples were held pending any anomalous positive results found in down-gradient stations. As no anomalous results were seen, no samples from this station were analyzed.

43) Mill Creek Sink Cave: All samples (water only) tested were positive for rhodamine WT as was expected; this was the introduction point for that dye. No fluorescein was detected.

Other Private Wells

121) Copeland Well: No dye was detected in the samples analyzed.

122) Tropic Traditions Well: No dye was detected in the samples analyzed.

123) Progress Center Well: No water samples collected here were analyzed; this well was monitored for a visual positive with negative results.

CONCLUSIONS

The dye trace investigation indicates a direct hydrologic connection between two recharge features on the Cross-County Fracture Zone and a spring discharge feature on the same fracture system. The apparent measured rate of groundwater flow in the fracture system is between 1,400 to 2,400 feet per day.

Hornsby Spring and the River Ranch Well

The results of this study indicate that Mill Creek Sink and Lee Sink are connected to Hornsby Spring. Detections of both rhodamine WT and fluorescein that were both strong in concentration and long in duration provide confirmation of that connection. Detection of rhodamine WT in water samples provided additional confirmation, and all Hornsby Spring area sites analyzed corroborated each other regarding arrival times and relative concentrations of both dyes. Figures 17 and 18 illustrate the connections and general flow directions of the dyes.

The most definitive result was obtained from the Hornsby Spring Daily (Station 4) sampler that showed the arrival of rhodamine WT from Mill Creek Sink at some time during Days 12 and 13. This was corroborated by the samplers collected at the Hornsby Spring Landing (Station 2) and the River Ranch Well (Station 111) during the Day 12 to 15 sampling interval. An initial positive detection from water was then confirmed on Day 15 from both the Hornsby Spring Daily (Station 2) and River Ranch Well (Station 111).

The other definitive result was obtained from the Hornsby Spring Main (Station 1) sampler that showed the arrival of fluorescein from Lee Sink at some time between Days 28 and 31. This was corroborated by the positive detection of fluorescein in the sampler at the River Ranch Well (Station 111) also during the Days 28 to 31 sampling interval. As this dye appeared to arrive at a concentration much lower than the rhodamine WT, no positive detection was obtained from water samples.

A detection of both dyes was made as late as the Day 139 to Day 154 sampler at the Hornsby Spring Main (Station 1).

Santa Fe Hills Subdivision System Well

The detection of rhodamine WT during two non-consecutive sampling intervals indicates that the Santa Fe Hill Subdivision Well is connected with Mill Creek Sink. This well is located only 1.27 miles northwest of Mill Creek Sink, was under constant use and is in line with Mill Sink relative to the Cross-County Fracture Zone. This was the only public supply well that tested positive for dye in the samples analyzed.

While the results were not as definitive as those at the Camp Kulaqua River Ranch Well, this study provides evidence that the surface waters entering Mill Creek Swallet may exert an influence on some wells in this area. During this study, surface water input into the swallet was minimal or non-existent, with upstream groundwaters in the cave receiving and moving the dye. A higher inflow of stream and stormwaters into this swallet may deliver a different level of impact to this well (and the adjacent system well).

Darby Spring

The results of this study indicate that Mill Creek Sink is potentially connected to Darby Spring. However, the positive results obtained for rhodamine WT from Darby Spring may not necessarily be proof of a direct underground connection with Mill Creek Sink. Based on the results at nearby Hornsby Spring and observations made during the dye trace, three possibilities can be considered regarding the detection of dye at this location.

First, it is a possibility that dye discharged from Hornsby Spring has mixed in these waters and was picked up by the samplers at this site. The cave is silty and the water visibility limited. These conditions were not conducive to easy sampler replacement and recover, so the sampler was lowered by a cord over the spring ledge and into the colder water of the entrance. Although Darby Spring was observed to maintain a lens of colder water in and around its entrance, it has very little flow, and a channel of water from Hornsby Spring Run and the river enters the Darby Spring Pool from upstream, and then flows past the spring pool creating a potential for the mixing of these waters.

The second possibility takes into account that dye-laden waters from Hornsby Spring have entered up-gradient swallet systems, with a portion of that water making its way into the cave passages that connect to Darby Spring. There are numerous swallets located within the Hornsby Spring Run that channel waters discharged at that spring back underground. At least four swallets are known to divers, and all have extensive cave passage, with one discharging directly back into the river at Treehouse Spring upstream of Darby Spring. Darby Spring has an extensive loop of cave passage connecting to a second, smaller spring, and is located in relatively close proximity downstream of these swallets and their caves.

The third possibility is that there is a direct underground connection from Mill Creek Sink. In light of the above, it would be imprudent at this time to assume this. If future dye studies are conducted in this area, sampling procedures should take these observations into account when designing sampling protocols here.

Study Area Results Map.

Study Area Results Map; Mill Creek Sink Cave Area.

RECOMMENDATIONS

The following should be considered when conducting future dye traces in this area.

1. A fracture trace analysis should be performed. This analysis would provide better identification of springs, wells and other locations that could be used as dye monitoring stations, as well as dye release locations. This would also provide a framework and hierarchy for planning consecutive dye traces.

2. As there is now a better understanding of the connections to Hornsby Spring, future dye traces may want to consider the inclusion of various in-river "rises" that occur within the Santa Fe River in this area. These may require the use of cave divers to establish sampling stations at various conduit junctions that may be present within these caves. These could include such in-river rise discharges as Columbia Spring, Alligator Rise and Treehouse Spring.

3. The authors believe that the results obtained at Darby Spring during this dye trace may not necessarily confirm a direct connection with Mill Creek Sink. There are at least two other scenarios that could explain the positive detections of dye. To address these alternative explanations, it would be prudent to conduct sampling further back into the cave to minimize the chances of dye contamination from the Santa Fe River and Hornsby Spring Run in any future trace here. To determine if there is an indirect path for dye via the various Hornsby Spring Run swallet caves, a trace could be conducted by releasing dyes directly into those swallet caves; Darby Spring could then be monitored to determine if subterranean connections exist.

4. The water level in the Lee Sink Swallet, unlike that at Mill Creek Swallet, is much more variable, and appears at times to be at an elevation higher than that of the surrounding groundwater level. It would be prudent to place an additional gauge within Lee Sink, and to utilize a nearby monitor well for depth-to-water measurements. This would be easily facilitated by the elevation bench that has been established near the Swallet.

5. Establish staff gauges and water level monitoring at all sampling and discharge locations prior to dye release and for the period of the investigation.

6. Measure the in-conduit flow rates within the upstream cave passages at Mill Creek Sink Cave and Hornsby Spring Cave.

7. Develop a mass balance for the Cross-county Fracture Zone, to better understand the quantities of water entering and being discharged.

8. Select additional water level data points for Alachua County potentiometric surface contour maps to better correlate the relationship of this area to the Santa Fe River. The staff gauge established during this study at Mill Sink Swallet can be included among such additions.

REFERENCES

ACEPD, 2004. May 2004 Floridan Aquifer Potentiometric Surface Map in Alachua County. Alachua County Environmental Protection Department, Gainesville, Florida.

ADPW, 2006. Unpublished data; monthly pumping records for municipal wells. City of Alachua Dept. of Public Works, High Springs, Florida.

Aley, T., 1999. Groundwater Tracing Handbook. Ozark Underground Laboratory, Protem, MO, 35 pp.

Aley, T., 2003. Procedures And Criteria - Analysis of Fluorescein, Eosine, Rhodamine WT, Sulforhodamine B, and Pyranine Dyes In Water and Charcoal Samplers. Ozark Underground Laboratory, Protem, MO, 21 pp.

Clark, W.E., Musgrove, R.H., Menke, C.G., and Cagle, J.W., Jr., 1964. Water Resources of Alachua, Bradford, Clay and Union Counties, Florida. Report of Investigations No. 35, Florida Geological Survey, Tallahassee, Florida, 170 pp.

Fisk, D.W., and Exley, I.S., 1976, Unpublished report. Alachua County Environmental Protection Department file document. 2 pp.

Hoenstine, and Lane, E., 1991. Environmental Geology and Hydrogeology of the Gainesville Area, Florida. Special Publication No. 33, Florida Geological Survey, Tallahassee, Florida, 70 pp.

Hornsby, D., and Ceryak, R., 1998, Springs of the Santa Fe River Basin in Florida. WR99-02, Suwannee River Water Management District, Live Oak, Florida, 178 pp.

HSDPW, 2006. Unpublished data; monthly pumping records for municipal wells. City of High Springs Dept. of Public Works, High Springs, Florida.

Macesich, M., 1988. Geologic Interpretation of the Aquifer Pollution Potential in Alachua County, Florida. Open File Report No. 21, Florida Geological Survey, Tallahassee, Florida, 25 pp.

Rosenau, J.C., Faulkner, G.L., Hendry, C.W., Jr., and Hull, R.W., 1977, Springs of Florida. Geological Bulletin No. 31 (rev.), Florida Bureau of Geology, Tallahassee, Florida , 461 pp.

Scott, T.M., Means, G.H., Means, R.C., and Meegan, R.P., 2002, First Magnitude Springs of Florida. Open File Report No. 85, Florida Geological Survey, Tallahassee, Florida, 138 pp.

Scott, T.M., Means, G.H., Meegan, R.P., Means, R.C., Upchurch, S.B., Copeland, R E., Jones, J., Roberts, T., and Willet, A., 2004, Springs of Florida. Geological Bulletin No. 66, Florida Geological Survey, Tallahassee, Florida, 377 pp.

Southeastern Geological Society, 1986. Hydrogeological Units of Florida. Special Publication No. 28, Florida Geological Survey, Tallahassee, Florida, 9 pp.

SRWMD, 2005. Potentiometric Surface of the Upper Floridan Aquifer in the Suwannee River Water Management District, May 2005. Suwannee River Water Management District, Live Oak, Florida.

SRWMD, **2006**¹. Unpublished raw data; data from water level and rainfall recording stations. Suwannee River Water Management District, Live Oak, Florida.

SRWMD, 2006². Unpublished data; Hornsby Spring discharge measurements. Suwannee River Water Management District, Live Oak, Florida.

White, W.A., 1970. The Geomorphology of the Florida Peninsula. Geological Bulletin No. 51, Florida Bureau of Geology, Tallahassee, Florida, 164 pp.

Williams, K.E., Nicola, D., and Randazzo, A.F., 1977, The Geology of the Western Part of Alachua County, Florida. Report of Investigations No. 85, Florida Bureau of Geology, Tallahassee, Florida, 98 pp.

APPENDIX I

PHOTOGRAPHIC PLATES

Plate 1. Mill Creek Sink Swallet.

Plate 2. Mill Creek Sink.

Plate 3. Mill Creek Sink Cave. Divers descending into the cavern. Photo courtesy of Cindy Butler.

Plate 4. Mill Creek Sink Cave. Bottom of the cavern at 150 feet of depth. Rhodamine WT was released into the downstream passage just beyond this location. Photo courtesy of Cindy Butler.

Plate 5. Mill Creek Sink Cave. Large room immediately upstream of the Sink, at 140 feet of depth. Note the diver hovering over a thick bank of clay and other sediments. Photo courtesy of Cindy Butler.

Plate 6. Mill Creek Sink Cave. Divers in the cave passage upstream of Sink, at 160 feet of depth. Photo courtesy of Cindy Butler.

Plate 7. Sinkhole above and in the vicinity of the Terminal Room of the Mill Creek Sink Cave.

Plate 8. Lee Sink Swallet.

Plate 9. Lee Sink Swallet during dry conditions.

Plate 10. Santa Fe River and water level gauge and recorder. View is looking upstream at the Highway 441 Bridge.

Plate 11. Hornsby Spring and Run.

Plate 12. Darby Spring.

Dye Trace: Mill Creek/Lee Sinks, July-December, 2005; Appendix I

Plate 13. Poe Spring.

Plate 14. Dye release at Lee Sink. Photo courtesy of Steve Boyes.

Dye Trace: Mill Creek/Lee Sinks, July-December, 2005; Appendix I

Plate 15. Dye release at Mill Creek Sink. Photo courtesy of Steve Boyes.

Plate 16. River Ranch Well.
APPENDIX IIA

ANALYTICAL RESULTS (Including Certificates of Analysis)

<section-header> Mr. Peter Butt Karst Environmental Services, Inc. P. O. Box 1368 High Springs, Florida 32643 RE: Mill Creek/Lee Sinks Dye Trace, BG-1 Analysis results for charcoal samplers shipped on July 8, 2005 Ogark Underground Laboratory (OUL) numbers P2519 through P2521. Dear Peter: We have completed analysis of the charcoal samplers received at the OUL Number for each of these samplers on the enclosed table. Dear Peter: Assummary of the results is presented in Table 1. Additional samplers received, the outer, based on the enclosed analysis graphs. Sincerely, Jummary J. Lipky J. Analysis results for charcoal samplers in the second weight of the dynamical samplers. Jummary J. Table 1 Analysis results for charcoal samplers.</section-header>	on July 12, 2005. d upon standards ent; the RWT is a
Description of the results is presented in Table 1. Additional samplars results for charces is a mixture of 75% dye and 25% dilus 25% d	on July 12, 2005. i upon standards ent; the RWT is a
 CERTIFICATE OF ANALITISTS Mr. Peter Butt Karst Environmental Services, Inc. P. O. Box 1368 High Springs, Florida 32643 RE: Mill Creek/Lee Sinks Dye Trace, BG-1 Analysis results for charcoal samplers shipped on July 8, 2005 Ozark Underground Laboratory (OUL) numbers P2519 through P2521. Dear Peter: We have completed analysis of the charcoal samplers received at the OUL We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% dilu 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional samplin available on the enclosed analysis graphs. Sincerely, J. Table 1. Analysis results for charcoal samplers 	on July 12, 2005. d upon standards ent; the RWT is a
 Mr. Peter Butt Karst Environmental Services, Inc. P. O. Box 1368 High Springs, Florida 32643 KE: Mill Creek/Lee Sinks Dye Trace, BG-1 Analysis results for charcoal samplers shipped on July 8, 2005 Ozark Underground Laboratory (OUL) numbers P2519 through P2521. Dear Peter: We have completed analysis of the charcoal samplers received at the OUL We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% dilu- 20% solution. The concentrations are based upon the as-sold weight of the dye. Masammary of the results is presented in Table 1. Additional samplin available on the enclosed analysis graphs. Sincerely, Masammary I. Table 1. Analysis results for charcoal samplers 	on July 12, 2005. 2. d upon standards ent; the RWT is a
 Mr. Peter Butt Karst Environmental Services, Inc. P. O. Box 1368 High Springs, Florida 32643 RE: Mill Creek/Lee Sinks Dye Trace, BG-1 Analysis results for charcoal samplers shipped on July 8, 2005 Ozark Underground Laboratory (OUL) numbers P2519 through P2521. Dear Peter: We have completed analysis of the charcoal samplers received at the OUL We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% diluu 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional samplin available on the enclosed analysis graphs. Sincerely, Marson Aley, PHG and RG Enclosure: 1) Table 1 - Analysis results for charcoal samplers 	on July 12, 2005. e. d upon standards ent; the RWT is a
 Karst Environmental Services, Inc. P. O. Box 1368 High Springs, Florida 32643 RE: Mill Creek/Lee Sinks Dye Trace, BG-1 Analysis results for charcoal samplers shipped on July 8, 2005 Ozark Underground Laboratory (OUL) numbers P2519 through P2521. Dear Peter: We have completed analysis of the charcoal samplers received at the OUL We have indicated the OUL number for each of these samplers on the enclosed table. The flucrescein and rhodamine WT (RWT) dye concentrations are based routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% dilus 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional samplin available on the enclosed analysis graphs. Sincerely, Mama MAG Thomas J. Aley, PHG and RG Enclosure: I) Table 1 - Analysis results for charcoal samplers 	on July 12, 2005. 2. d upon standards ent; the RWT is a
 High Springs, Florida 32643 RE: Mill Creek/Lee Sinks Dye Trace, BG-1 Analysis results for charcoal samplers shipped on July 8, 2005 Ozark Underground Laboratory (OUL) numbers P2519 through P2521. Dear Peter: We have completed analysis of the charcoal samplers received at the OUL. We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% dilut 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional samplin available on the enclosed analysis graphs. Sincerely, Marcon J. Aley, PHG and RG Enclosures: D. Table 1. Analysis results for charcoal samplers 	on July 12, 2005. e. d upon standards ent; the RWT is a
 RE: Mill Creek/Lee Sinks Dye Trace, BG-1 Analysis results for charcoal samplers shipped on July 8, 2005 Ozark Underground Laboratory (OUL) numbers P2519 through P2521. Dear Peter: We have completed analysis of the charcoal samplers received at the OUL We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% dilu- 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional samplin available on the enclosed analysis graphs. Sincerely, Man Mag Thomas J. Aley, PHG and RG Enclosure: 1). Table 1. Analysis results for charcoal samplers 	on July 12, 2005. 2. d upon standards ent; the RWT is a
Analysis results for charcoal samplers shipped on July 8, 2005 Ozark Underground Laboratory (OUL) numbers P2519 through P2521. Dear Peter: We have completed analysis of the charcoal samplers received at the OUL We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% dilus 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional samplin available on the enclosed analysis graphs. Sincerely, Thomas J. Aley, PHG and RG	on July 12, 2005. e. d upon standards ent; the RWT is a
Ozark Underground Laboratory (OUL) numbers P2519 through P2521. Dear Peter: We have completed analysis of the charcoal samplers received at the OUL. We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% dilue 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional sampling available on the enclosed analysis graphs. Sincerely, Maran Aley, PHG and RG Enclosures: 1). Table 1 - Analysis results for charcoal samplers	on July 12, 2005. 2. d upon standards ent; the RWT is a
Dear Peter: We have completed analysis of the charcoal samplers received at the OUL. We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% dilute 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional sampling available on the enclosed analysis graphs. Sincerely, Marcon Marcon Thomas J. Aley, PHG and RG Enclosures: 1). Table 1 - Analysis results for charcoal samplers	on July 12, 2005. e. d upon standards ent; the RWT is a
We have completed analysis of the charcoal samplers received at the OUL We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% dilu- 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional sampling available on the enclosed analysis graphs. Sincerely, Marcon Marcon Marcon Marcon Marcon Marcon Marcon Thomas J. Aley, PHG and RG	on July 12, 2005. e. d upon standards ent; the RWT is a
We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are bases routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% dilu 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional sampling available on the enclosed analysis graphs. Sincerely, Massa J. Aley, PHG and RG Enclosures: 1). Table 1 - Analysis results for charceal samplers	e. I upon standards ent; the RWT is a
The fluorescein and rhodamine WT (RWT) dye concentrations are bases routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% dilu 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional samplin available on the enclosed analysis graphs. Sincerely, More AAG Thomas J. Aley, PHG and RG	d upon standards ent; the RWT is a
routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% dilu 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional samplin available on the enclosed analysis graphs. Sincerely, Markow Mark Thomas J. Aley, PHG and RG Enclosures: 1). Table 1 - Analysis results for charceal samplers	ent; the RWT is a
A summary of the results is presented in Table 1. Additional samplin available on the enclosed analysis graphs. Sincerely, Thomas J. Aley, PHG and RG Enclosurer: 1). Table 1 - Analysis results for charcoal samplers	
A summary of the results is presented in Table 1. Additional samplin available on the enclosed analysis graphs. Sincerely, Thomas J. Aley, PHG and RG Enclosures: 1). Table 1 - Analysis results for charcoal samplers	
Sincerely, Sincerely, Thomas J. Aley, PHG and RG Enclosurer: 1). Table 1 - Analysis results for charcoal samplers	g information is
Sincerely,	
Thomas J. Aley, PHG and RG	
Thomas J. Aley, PHG and RG	
Thomas J. Aley, PHG and RG	
Enclosures: 1) Table 1 - Analysis results for charcoal samplers	
Entropy () () () () () () () () () () () () ()	
 Sample Collection Data Sheet Sample analysis graphs 	
of camper and a graph	
	f-dooslooalkes39
	-

Project name:Mill Creek/Lee Sinks Dye Trace, BG-1Samples collected by:KES staffDate samples shipped:July 8, 2005Date samples rec'd at OUL:July 12, 2005Date samples analyzed by OUL:July 14, 2005

Table 1 waveler	I. Results for a second	or charcoal samplers analyzed for the orted in nanometers (nm); dye concentration	ne presence of tions are repor	f fluorescein a ted in parts per	and rhoda r billion (pp	mine WT b).	(RWT) dy	es. Peak
OUL #	L Stn. Station Date/Time Date/Time Fluorescein # Name Placed Collected Results I					RV Res	VT ults	
			2005	2005	Peak	Conc.	Peak	Conc.
P2519	22	Santa Fe River Rise	6/30 1653	7/7 1620	ND		ND	
P2520	Laborat	ory control charcoal blank						
P2521	1	Hornsby Spring - Main	6/30 1615	7/7 1455	ND		ND	

FOOTNOTES:

ND = None Detected

ABORATORY 1572 Aley Lane Protem, MO 65733 (417) 785-4289 fax (417) 785-4290 oul@tri-lakes.net August 10, 2005 CERTIFICATE OF ANALYSIS Mr. Peter Butt Karst Environmental Services, Inc. P. O. Box 1368 High Springs, Florida 32643 Mill Creek / Lee Sinks Dye Trace, Week 1 RE: Analysis results for charcoal and water samples shipped on August 3, 2005 Ozark Underground Laboratory (OUL) numbers P2795 through P2814. Dear Peter: We have completed analysis of the charcoal and water samples received at the OUL on August 4, 2005. We have indicated the OUL number for each of these samples on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based upon standards routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% diluent; the RWT is a 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional sampling information is available on the enclosed analysis graphs. Sincerely, Thomas J. Aley, PHG and RG 1) Table 1 - Analysis results for charcoal and water samples Enclosures: 2) Sample Collection Data Sheets 3) Sample analysis graphs f'idocsicoa/kes40.doc

Water and Land Use Investigations

Project name:	Mill Creek/Lee Sinks Dye Trace, Week 1
Samples collected by:	KES staff
Date samples shipped:	August 3, 2005
Date samples rec'd at OUL:	August 4, 2005
Date samples analyzed by OUL:	August 5, 2005

Table 1. Results for charcoal and water samples analyzed for the presence of fluorescein and rhodamine WT (RWT) dyes. Peak wavelengths are reported in nanometers (nm); dye concentrations are reported in parts per billion (ppb). All results are for charcoal unless otherwise indicated.

OUL #	Stn. #	Station Name	Date/Time Placed	Date/Time Collected	e Fluorescein Results		RV Res	WT sults
			2005	2005	Peak	Conc.	Peak	Conc.
P2795	1	Hornsby Spring -Main	7/25 1529	7/29 1358	ND		ND	
P2796	1	Hornsby Spring - Main	7/29 1358	8/1 1506	ND		ND	
P2797	2	Hornsby Spring Landing	7/25 1533	7/29 1407	ND		ND	
P2798	2	Hornsby Spring Landing	7/29 1407	8/1 1504	ND		ND	
P2799	11	Poe Spring Shallow Vent	7/25 1800	8/1 1856	ND		ND	
P2800	Labora	tory control charcoal blank	· ·					
P2801	12	Poe Spring Gauge Vent	7/25 1757	8/1 1901	ND		ND	
P2802	101	High Springs Well # 1 (West)	7/25 1309	7/29 1506	ND		ND	
P2803	101	High Springs Well # 1 (West)	7/29 1506	8/1 1131	ND		ND	
P2804	122	Tropic Traditions Well	7/25 1324	8/1 1146	ND		ND	
P2805	103	Alachua Well # 1	7/25 1427	7/29 1628	ND		ND	
P2806	103	Alachua Well # 1	7/29 1628	8/1 1208	ND		ND	
P2807	104	Alachua Well # 2	7/25 1416	7/29 1635	ND		ND	
P2808	104	Alachua Well # 2	7/29 1635	8/1 1220	ND		ND	
P2809	106	Santa Fe Hills Subdivision Well	7/26 1620	7/29 1540	ND		ND	
P2810	106	Santa Fe Hills Subdivision Well	7/29 1540	8/1 1329	ND		ND	
(Footnot	tes at end of	f Table)					(0	continued)

Table 1 Peak w charcoa	l . Results fo avelengths a l unless othe	or charcoal and water samples are reported in nanometers (nm); erwise indicated.	analyzed for the produce on the product of the prod	esence of fluo re reported in	rescein and parts per bi	l rhodamiı illion (ppb)	ne WT (R) . All resu	WT) dyes. Ilts are for			
OUL #	Stn. #	Station Name	Date/Time Placed	Date/Time Collected	Fluor Res	Fluorescein Results		n RWT Results			
			2005	2005	Peak	Conc.	Peak	Conc.			
(continue	ed)										
P2811	121	Copeland Well	7/25 1344	8/1 1338	ND		ND				
P2812	22	Santa Fe River Rise	7/26 1740	8/1 1638	ND		ND				
P2813	43	Mill Creek Sink Cave	Water	7/29 1722	ND		574.1	11.3			
P2814	43	Mill Creek Sink Cave	Water	7/31 1800	ND		574.1	5.16			

FOOTNOTES:

ND = None Detected

Project name:	Mill Creek/Lee Sinks Dye Trace, Week 2
Samples collected by:	KES staff
Date samples shipped:	August 10, 2005
Date samples rec'd at OUL:	August 11, 2005
Date samples analyzed by OUL:	August 12, 2005

Table 1. Results for charcoal and water samples analyzed for the presence of fluorescein and rhodamine WT (RWT) dyes. Peak wavelengths are reported in nanometers (nm); dye concentrations are reported in parts per billion (ppb). All results are for charcoal unless otherwise indicated.

enarcou	ii unicos ou	lei wise indicated.						
OUL #	Stn. #	Station Name	Date/Time Placed	Date/Time Collected	Fluorescein Results		RWT Results	
			2005	2005	Peak	Conc.	Peak	Conc.
P2899	2	Hornsby Spring Landing	8/1 1504	8/4 1401	ND		ND	
P2900	Labora	atory control charcoal blank			•			
P2901	2	Hornsby Spring Landing	8/4 1401	8/7 1600	ND		ND	
P2902	11	Poe Spring Shallow Vent	8/1 1856	8/4 1748	ND		ND	
P2903	11	Poe Spring Shallow Vent	8/4 1748	8/7 1432	ND		ND	
P2904	101	High Springs Well # 1 (West)	8/1 1131	8/4 1439	ND		ND	
P2905	101	High Springs Well # 1 (West)	8/4 1439	8/7 1825	ND		ND	
P2906	106	Santa Fe Hills Subdivision Well	8/4 1514	8/7 1830	ND		ND	
P2907	122	Tropic Traditions Well	8/1 1146	8/8 1458	ND		ND	
P2908	104	Alachua Well # 2	8/1 1220	8/4 1608	ND		ND	
P2909	104	Alachua Well # 2	8/4 1608	8/7 1903	ND		ND	
P2910	43	Mill Creek Sink Cave	Water	8/3 1759	ND		574.3	5.69
P2911	43	Mill Creek Sink Cave	Water	8/5 1449	ND		574.3	4.78
P2912	43	Mill Creek Sink Cave	Water	8/8 1710	ND		574.5	2.33

FOOTNOTES:

ND = None Detected

ELABORATORY 1572 Me	ey Lane Protem, MO 65733	(417) 785-4289	fax (417) 785-4290	oul@
	August 31, 20	05		
	CERTIFICATE OF A	NALYSIS		
Mr. Peter Batt			,	
Karst Environmental Services	i, Inc.			
High Springs, Florida 32643				
RE: Mill Creek / Lee Sink Analysis results for ch additional che	as Dye Trace, Weeks 2, 3 ar harecoal and water samples a arecoal samplers from those	id 4 shipped on August shipped on August	18, 2005 and t 10, 2005	
Ozark Underground L P3171 throug	aboratory (OUL) numbers h P3181	P2998 through P34	021 and	
Dear Peter:				
We have completed	analysis of the charcoal a	nd water samples	you selected from	those
received at the OUL on Aug	ust 19, 2005 and additional bal request of August 25, 2	l charcoal sampler 005. We have judi	s received at the OU rated the OUL normh	JL on er for
each of these samples on the o	enclosed table.			
The fluorescein and r	rhodamine WT (RWT) dy	e concentrations :	are based upon stan	derds
routinely used at the OUL. T 20% solution. The concentrat	The fluoresecin is a mixture tions are based upon the as-	of 75% dye and 2 sold weight of the	25% diluent; the RW dye.	T is a
A summary of the r available on the enclosed anal	results is presented in Tal lysis graphs.	ble 1. Additional	sampling informati	ion is
Sinorrely,				
Them AG	2			
Thomas J. Aley. PHG and RG				
Fundamente 1) Table 1	Analysis ramits for down	al and water carry	les	
2) Sample C	Collection Data Sheets	and and water destrip		
 Discrepan Sample a 	ncy sheet malysis graphs			

Project name:	Mill Creek/Lee Sinks Dye Trace, Weeks 2, 3 and 4
Samples collected by:	KES staff
Date samples shipped:	August 10 and 18, 2005
Date samples rec'd at OUL:	August 11 and 19, 2005
Date samples analyzed by OUL:	August 24 and 31, 2005

Table 1. Results for charcoal and water samples analyzed for the presence of fluorescein and rhodamine WT (RWT) dyes. Peak wavelengths are reported in nanometers (nm); dye concentrations are reported in parts per billion (ppb). All results are for charcoal unless otherwise indicated.

OUL #	Stn. #	Station Name	Date/Time Placed	Date/Time Collected	Fluorescein Results		R Re	RWT Results	
			2005	2005	Peak	Conc.	Peak	Conc.	
P2998	2	Hornsby Spring Landing	8/7 1600	8/10 1239	ND		568.8	13.3	
P2999	2	Hornsby Spring Landing	8/10 1239	8/13 1536	ND		569.3	38.4	
P3000	Labora	tory Control Charcoal Blank							
P3001	2	Hornsby Spring Landing	8/13 1536	8/16 1310	ND		569.3	30.3	
P3002	22	Santa Fe River Rise	8/7 1736	8/13 1629	ND		ND		
P3003	11	Poe Spring Shallow Vent	8/7 1432	8/10 1530	ND		ND		
P3004	11	Poe Spring Shallow Vent	8/10 1530	8/13 1432	ND		ND		
P3005	11	Poe Spring Shallow Vent	8/13 1432	8/16 1601	ND		ND		
P3006	14	Fenceline Spring	8/7 1420	8/13 1408	ND		ND		
P3007	17	Poe Spring Run	8/10 1548	8/16 1614	ND		ND		
P3008	101	High Springs Well # 1 (West)	8/7 1825	8/10 1312	ND		ND		
P3009	101	High Springs Well # 1 (West)	8/10 1312	8/13 1719	ND		ND		
P3010	101	High Springs Well # 1 (West)	8/13 1719	8/16 1326	ND		ND		
P3011	106	Santa Fe Hills Subdivision Well	8/7 1830	8/10 1353	ND		ND		
P3012	106	Santa Fe Hills Subdivision Well	8/10 1353	8/13 1842	ND		ND		
P3013	106	Santa Fe Hills Subdivision Well	8/13 1842	8/16 1450	ND		ND		
(Footnot	tes at end of	f Table)					(continued)	

Table 1 Peak wa charcoa	I. Results f avelengths l unless oth	or charcoal and water samples are reported in nanometers (nm); erwise indicated.	analyzed for the pr dye concentrations a	esence of fluo are reported in	rescein and parts per b	d rhodami illion (ppb)	ne WT (R). All res	WT) dyes. ults are for	
OUL #	Stn. #	Station Name	Date/Time Placed	Date/Time Collected	Fluor Res	escein sults	R Re	RWT Results	
			2005	2005	Peak	Conc.	Peak	Conc.	
(continu	ed)			-	-	-	-	-	
P3014	121	Copeland Well	8/8 1618	8/15 1558	ND		ND		
P3015	122	Tropic Traditions Well	8/8 1458	8/13 1728	ND		ND		
P3016	104	Alachua Well # 2	8/7 1903	8/10 1431	ND		ND		
P3017	104	Alachua Well # 2	8/10 1431	8/13 1746	ND		ND		
P3018	104	Alachua Well # 2	8/13 1746	8/16 1419	ND		ND		
P3019	43	Mill Creek Sink Cave	Water	8/11 1653	ND		574.7	1.84	
P3020	Labora	tory Control Water Blank							
P3021	43	Mill Creek Sink Cave	Water	8/15 1709	ND		574.3	1.67	
P3171	1	Hornsby Spring - Main	8/7 1553	8/10 1230	ND		568.9	14.4	
P3172	1	Hornsby Spring - Main	8/10 1230	8/13 1537	ND		570.0	37.2	
P3173	1	Hornsby Spring - Main	8/13 1537	8/16 1307	ND		570.1	27.9	
P3174	111	River Ranch Well	8/7 1623	8/10 1255	ND		570.1	15.4	
P3175	111	River Ranch Well	8/10 1255	8/15 1445	ND		569.9	71.1	
P3176	4	Hornsby Spring Daily	8/9 1248	8/10 1228	ND		570.0	12.1	
P3177	4	Hornsby Spring Daily	8/8 1421	8/9 1248	ND		569.3	6.28	
P3178	4	Hornsby Spring Daily	8/7 1551	8/8 1421	ND		569.5	4.35	
P3179	4	Hornsby Spring Daily	8/6 1227	8/7 1551	ND		ND		
P3180	Labor	atory Control Charcoal Blank							
P3181	4	Hornsby Spring Daily	8/5 1306	8/6 1227	ND		ND		

 $\frac{FOOTNOTES:}{ND = None Detected}$

	TORY 1572 Ney Lane	Protem, MO 65733	(417) 785-4289	fax (417) 785-4290	oul@t
		September 19, 2	005		
	C	ERTIFICATE OF A	NALYSIS		
Mr. Peter Bu Karst Enviro P. O. Box 13	tt nmental Services, Inc. 68				
High Springs	s, Florida 32643				
RE: Mill Anal Ozar	Creek / Lee Sinks Dye lysis results for charco k Underground Labora	e Trace, Weeks 4-6 al and water samples : atory (OUL) numbers	shipped on Septern P3517 through P3	iber 7, 2005. 553, P3568 and P356	9.
Dear Mr. But	tt:				
We li received at th samples on th	have completed analy he OUL on Septembe he enclosed table.	sis of the charcoal a r 9, 2005. We have in	nd water samples adjeated the OUL	you selected from number for each of	those these
The f routinely use 20% solution	fluorescein and rhoda ed at the OUL. The flu a. The concentrations	mine WT (RWT) dy porescein is a mixture are based upon the as-	e concentrations a of 75% dye and 2 sold weight of the	are based upon stan 25% diluent; the RW dye.	dards T is a
A su available on t	immary of the results the enclosed analysis (s is presented in Tab graphs.	ole 1. Additional	sampling informati	on is
Sincerely,	- Ales				
Thomas J. Al	ley, PHG and RG				
Enclosures:	 Table 1 - Analy Sample Collect Sample analysis 	ysis results for charco tion Data Sheets is graphs	al and water sampl	les	
	3) Junipe minys	n Breben		Colorador	. Character
				T. docreo	arace+3.4

Project name:Mill Creek/Lee Sinks Dye Trace, Weeks 4-5Samples collected by:KES staffDate samples shipped:September 7, 2005Date samples rec'd at OUL:September 9, 2005Date samples analyzed by OUL:September 14 and 16, 2005

Table 1. Results for charcoal and water samples analyzed for the presence of fluorescein and rhodamine WT (RWT) dyes. Peak wavelengths are reported in nanometers (nm); dye concentrations are reported in parts per billion (ppb). All results are for charcoal unless otherwise indicated.

OUL	Stn.	Station Name	Date/Time	Date/Time	Fluor	rescein	R	WT
#	#		Placed	Collected	Peak	Conc.	Peak	Conc.
P3517	1	Hornsby Spring - Main	8/16/05 1307	8/19/05 1410	ND		569.5	30.0
P3518	1	Hornsby Spring - Main	8/19/05 1410	8/23/05 1423	ND		569.5	54.2
P3519	1	Hornsby Spring - Main	8/23/05 1423	8/26/05 1510	517.6 *	1.48	569.4	24.8
P3520	Labora	tory control charcoal blank						
P3521	1	Hornsby Spring - Main	8/26/05 1510	8/29/05 1558	516.4	1.91	569.6	21.2
P3522	1	Hornsby Spring - Main	8/29/05 1558	9/2/05 1418	516.4	3.36	569.8	27.7
P3523	1	Hornsby Spring - Main	9/2/05 1418	9/6/05 1623	516.1	4.09	569.2	18.1
P3524	111	River Ranch Well	8/15/05 1445	8/19/05 1430	ND		569.5	47.3
P3525	111	River Ranch Well	8/19/05 1430	8/23/05 1438	ND		569.8	30.4
P3526	111	River Ranch Well	8/23/05 1438	8/26/05 1548	517.2 *	0.824	570.0	15.3
P3527	111	River Ranch Well	8/26/05 1548	9/2/05 1443	515.8	3.43	569.2	42.4
P3528	22	Santa Fe River Rise	8/13/05 1620	8/19/05 1603	ND		ND	
P3529	22	Santa Fe River Rise	8/19/05 1603	8/25/05 1612	ND		ND	
P3530	22	Santa Fe River Rise	8/25/05 1612	9/2/05 1536	ND		ND	
P3531	4	Hornsby Spring Daily	Water	8/5/05 1306	ND		ND	
P3532	4	Hornsby Spring Daily	Water	8/6/05 1227	ND		ND	
P3533	4	Hornsby Spring Daily	Water	8/7/05 1551	ND		ND	
(Footnot	tes at end of	table)					(0	continued)

Table 1Peak was	. Results favelengths	for charcoal and water samples ana are reported in nanometers (nm); dye	lyzed for the pro-	esence of fluor are reported in	rescein an parts per b	d rhodami illion (ppb	ine WT (R). All res	WT) dyes. ults are for
charcoa	l unless oth	nerwise indicated.	Data /There	D-4-/T	El	•		
00L #	5tn. #	Station Name	Date/Time Placed	Collected	F luor Peak	Conc	R Peak	
(continu	ed)		Thattu	concettu	I cax	conc.	I Cak	conc.
P3534	4	Hornsby Spring Daily	Water	8/8/05 1421	ND		ND	
P3535	4	Hornsby Spring Daily	Water	8/9/05 1248	ND		ND	+
P3536	4	Hornsby Spring Daily	Water	8/10/05 1228	ND		576.8	0.093
P3568	4	Hornsby Spring Daily	Water	8/11/05 1529	ND		577.3	0.209
P3569	4	Hornsby Spring Daily	Water	8/12/05 1509	ND		574.6	0.198
P3537	4	Hornsby Spring Daily	Water	8/13/05 1535	ND		575.8	0.247
P3538	17	Poe Spring Run	8/16/05 1614	8/23/05 1330	ND		ND	
P3539	17	Poe Spring Run	8/23/05 1330	8/29/05 1831	ND		ND	
P3540	Labora	atory control charcoal blank	ŀ	•	•	•	-	-
P3541	17	Poe Spring Run	8/29/05 1831	9/6/05 1526	ND		ND	
P3542	106	Santa Fe Hills Subdivision Well	8/19/05 1710	8/23/05 1622	ND		570.6	2.49
P3543	106	Santa Fe Hills Subdivision Well	8/27/05 1411	9/2/05 1646	ND		571.6*	2.71
P3544	121	Copeland Well	8/25/05 1520	9/2/05 1632	ND		ND	
P3545	122	Tropic Traditions Well	8/25/05 1505	9/2/05 1642	ND		ND	
P3546	101	High Springs Well # 1 (West)	8/16/05 1326	8/19/05 1648	ND		ND	
P3547	101	High Springs Well # 1 (West)	8/19/05 1648	8/23/05 1458	ND		ND	
P3548	101	High Springs Well # 1 (West)	8/23/05 1458	8/26/05 1721	ND		ND	
P3549	101	High Springs Well # 1 (West)	8/26/05 1721	9/2/05 1624	ND		ND	
P3550	104	Alachua Well # 2	8/19/05 1737	8/23/05 1601	ND		ND	
P3551	104	Alachua Well # 2	8/26/05 1755	9/2/05 1709	ND		ND	
Footnote	s at end of	table					(continued)

Table 1Peak wcharcoa	1. Results fo avelengths a l unless othe	or charcoal and water samples analyz are reported in nanometers (nm); dye co erwise indicated.	and for the propondent of the propondent of the proposed of th	esence of fluor re reported in	r escein and parts per bi	l rhodami llion (ppb)	ne WT (RV . All resu	WT) dyes. lts are for
OUL	Stn.	Station Name	Date/Time	Date/Time	Fluor	escein	RV	WТ
#	#		Placed	Collected	Peak	Conc.	Peak	Conc.
(continu	ied)							
P3552	43	Mill Creek Sink Cave	Water	8/19/05 1750	ND		574.5	1.71
P3553	43	Mill Creek Sink Cave	Water	9/2/05 1730	ND		575.3	3.64

FOOTNOTES:

ND = None Detected

* = A fluorescence peak is present which does not meet all the criteria for a positive dye result. However, it has been calculated as though it were the tracer dye.

LABORATORY	1572 Aley Lane	Protem, MO 65733	(417) 785-4289	fax (417) 785-4290	oul@
		September 23, 2	005		
	G	RTIFICATE OF /	NALYSIS		
Mr. Peter Butt					
Karst Environment	al Services, Inc.				
High Springs, Flor	ida 32643				
PE: Mill Conde	/ Lee Sieles Dee	Trace, archived sam	ples from weeks 2-	6.	
Analysis re	sults for selected	archived charcoal a	nd water samples s	hipped	
Aı	gust 10, 2005 and	d September 7, 2005	Distant descende 1920	669	
Ozark Und	lerground Laboral	tory (OUL) numbers	P3634 through P3	008.	
Dear Mr. Butt:					
We have of those received at the for each of these st	completed analysis are OUL on August amples on the end	is of the archived cli st 11 and September dosed table.	arcoal and water s 9, 2005. We have i	amples you selected ndicated the OUL n	from imber
The fluores routinely used at the 20% solution. The	cein and rhodan he OUL. The flu concentrations a	nine WT (RWT) d orescein is a mixtur re based upon the as	e concentrations a e of 75% dye and 2 -sold weight of the	are based upon star 15% diluent; the RW dye.	sdards T is a
A summar available on the en	ry of the results closed analysis g	is presented in Ta raphs.	ble 1. Additional	sampling informat	ion is
Sincerely,					
	- 10				
1 homen	Her				
Thomas J. Aley, P.	HG and Ry				
Enclosures: 1)	Table 1 - Analy	sis results for charce	val and water samp	kes	
2)	Sample Collect Sample analysi	son Data Sheets s graphs			
	ounder miche	- a t		fisheste	
				1.000540	02.02.000

Dye Trace: Mill Creek/Lee Sinks, July-December, 2005; Appendix IIA

Project name:Mill Creek/Lee Sinks Dye Trace, archived samples from Weeks 2-6Samples collected by:KES staffDate samples shipped:August 10 and September 7, 2005Date samples analyzed by OUL:August 11 and September 9, 2005Date samples analyzed by OUL:September 21, 2005

Table 1. Results for charcoal and water samples analyzed for the presence of fluorescein and rhodamine WT (RWT) dyes. Peak wavelengths are reported in nanometers (nm); dye concentrations are reported in parts per billion (ppb). All results are for charcoal unless otherwise indicated.

OUL	Stn.	Station Name	Date/Time	Date/Time	Fluor	escein	RV	WТ
#	#		Placed	Collected	Peak	Conc.	Peak	Conc.
P3654	1	Hornsby Spring -Main	8/1/05 1506	8/4/05 1353	ND		ND	
P3655	1	Hornsby Spring -Main	8/4/05 1353	8/7/05 1553	ND		ND	
P3656	111	River Ranch Well	8/1/05 1528	8/4/05 1417	ND		ND	
P3657	111	River Ranch Well	8/4/05 1417	8/7/05 1623	ND		ND	
P3658	2	Hornsby Spring Landing	8/19/05 1413	8/23/05 1427	ND		569.4	34.8
P3659	2	Hornsby Spring Landing	8/23/05 1427	8/26/05 1517	ND		569.0	14.3
P3660	Labora	tory control charcoal blank						
P3661	2	Hornsby Spring Landing	8/26/05 1517	8/29/05 1600	ND		569.2	14.8
P3662	106	Santa Fe Hills Subdivision Well	8/16/05 1450	8/19/05 1710	ND		ND	
P3663	106	Santa Fe Hills Subdivision Well	8/23/05 1622	8/27/05 1411	ND		ND	
P3664	121	Copeland Well	8/15/05 1558	8/19/05 1656	ND		ND	
P3665	121	Copeland Well	8/19/05 1656	8/25/05 1520	ND		ND	
P3666	4	Hornsby Spring Daily	Water	8/19/05 1408	ND		577.2	0.199
P3667	4	Hornsby Spring Daily	Water	8/23/05 1421	ND		576.8 *	0.128
P3668	4	Hornsby Spring Daily	Water	8/26/05 1507	ND		577.8 *	0.165

FOOTNOTES:

ND = None Detected * = A fluorescence

= A fluorescence peak is present which does not meet all the criteria for a positive dye result. However, it has been calculated as though it were the tracer dye.

	LABORATOR	¥ 1572 Aley Lane	Protem, MO 65735	(417) 785-4289	fax (417) 785-4290	oul@tri-la
			September 28, 2	005		
		CE	RTIFICATE OF S	NALYSIS		
7	Mr. Peter Butt	atal Samions Inc.				
I	P. O. Box 1368	nual del video, nue				
ł	ligh Springs, Fle	mda 3204 <i>5</i>				
I	RE: Mill Cree Analysis Ozark Ui	sk / Lee Sinks Dye l results for charcoal aderground Laborate	Frace, archived sam and water samples ory (OUL) numbers	ples from weeks 7- shipped September P3719 through P3	-8. · 22, 2005. 748.	
I	Dear Mr. Butt:					
r	We have received at the C amples on the er	completed analysi UL on September 2 aclosed table.	is of the charcoal a 23, 2005. We have	ind water samples indicated the OUL	you selected from number for each of	those these
r 2	The fluor outinely used at 20% solution. Th	escein and rhodam the OUL. The fluc he concentrations ar	ine WT (RWT) dy prescein is a mixture e based upon the as	e concentrations of 75% dye and 2 sold weight of the	are based upon star 25% diluent; the RW dye.	dards T is a
8	A summ vailable on the e	ary of the results enclosed analysis gra	is presented in Tal aphs.	ale 1. Additional	sampling informat	ion is
2	Sincerely,	10				
9	Thorem	Ally				
	Thomas J. Aley,	PHG and RG				
1	Enclosures: 1	 Table 1 - Analys Sample Collection 	as results for charco on Data Sheets	al and water samp	les	
		 Discrepancy she Sample analysis 	et graphs			
					Éldociles	aikes45.doe

Dye Trace: Mill Creek/Lee Sinks, July-December, 2005; Appendix IIA

Project name:Mill Creek/Lee Sinks Dye Trace, Weeks 7-8Samples collected by:KES staffDate samples shipped:September 22, 2005Date samples rec'd at OUL:September 23, 2005Date samples analyzed by OUL:September 26, 2005

Table 1. Results for charcoal and water samples analyzed for the presence of fluorescein and rhodamine WT (RWT) dyes.Peak wavelengths are reported in nanometers (nm); dye concentrations are reported in parts per billion (ppb).All results are for
charcoal unless otherwise indicated.

OUL	Stn.	Station Name	Date/Time	Date/Time	Fluo	rescein	R	WT
#	#		Placed	Collected	Peak	Conc.	Peak	Conc.
P3719	1	Hornsby Spring - Main	9/6/05 1623	9/9/05 1435	516.7	2.24	570.5	7.29
P3720	Labora	atory control charcoal blank	·				•	
P3721	1	Hornsby Spring - Main	9/9/05 1435	9/12/05 1518	516.3	2.83	570.0	8.24
P3722	1	Hornsby Spring - Main	9/12/05 1518	9/15/05 1416	516.3	3.13	569.7	5.90
P3723	1	Hornsby Spring - Main	9/15/05 1416	9/19/05 1631	515.4	3.32	569.1	5.91
P3724	5	Hornsby Spring South	8/26/05 1620	9/2/05 1423	516.1	3.26	568.5	34.5
P3725	5	Hornsby Spring South	9/2/05 1423	9/9/05 1439	515.6	2.55	569.1	14.3
P3726	5	Hornsby Spring South	9/9/05 1439	9/15/05 1510	515.8	1.41	570.6	4.31 *
P3727	111	River Ranch Well	9/2/05 1443	9/9/05 1500	515.4	2.94	568.5	21.0
P3728	111	River Ranch Well	9/9/05 1500	9/15/05 1559	515.3	1.88	570.1	7.98
P3729	106	Santa Fe Hills Subdivision Well	9/2/05 1646	9/9/05 1659	ND		ND	
P3730	106	Santa Fe Hills Subdivision Well	9/9/05 1659	9/16/05 1517	ND		ND	
P3731	106	Santa Fe Hills Subdivision Well	9/16/05 1517	9/21/05 1339	ND		ND	
P3732	121	Copeland Well	9/2/05 1632	9/9/05 1648	ND		ND	
P3733	121	Copeland Well	9/9/05 1648	9/16/05 1503	ND		ND	
P3734	122	Tropic Traditions Well	9/9/05 1714	9/16/05 1348	ND		ND	
P3735	22	Santa Fe River Rise	9/2/05 1536	9/9/05 1600	ND		ND	
P3736	22	Santa Fe River Rise	9/9/05 1600	9/16/05 1625	ND		ND	
P3737	111	River Ranch Well	Water	8/7/05 1623	ND		ND	

Dye Trace: Mill Creek/Lee Sinks, July-December, 2005; Appendix IIA

Page 18 of 28

Table 1Peak wcharcoa	 Results f avelengths l unless oth 	or charcoal and water samples analy are reported in nanometers (nm); dye c erwise indicated.	zed for the pro- oncentrations a	esence of fluor re reported in	r escein and parts per b	d rhodami illion (ppb)	ne WT (R). All res	WT) dyes. ults are for
OUL	Stn.	Station Name	Date/Time	Date/Time	Fluor	escein	R	WT
#	#		Placed	Collected	Peak	Conc.	Peak	Conc.
P3738	111	River Ranch Well	Water	8/10/05 1255	ND		576.8	0.201
P3739	106	Santa Fe Hills Subdivision Well	Water	8/19/05 1710	ND		ND	
P3740	Labora	tory control water blank						
P3741	106T	Santa Fe Hills Subdivision Well - System Tap Water	Water	9/21/05 1339	ND		ND	
P3742	43	Mill Creek Sink Cave	Water	9/9/05 1736	ND		575.2	1.46
P3743	17	Poe Spring Run	9/6/05 1526	9/12/05 1430	ND		ND	
P3744	17	Poe Spring Run	9/12/05 1430	9/19/05 1724	ND		ND	
P3745	101	High Springs Well # 1 (West)	9/2/05 1624	9/9/05 1654	ND		ND	
P3746	101	High Springs Well # 1 (West)	9/9/05 1654	9/16/05 1338	ND		ND	
P3747	104	Alachua Well # 2	9/2/05 1709	9/9/05 1740	ND		ND	
P3748	104	Alachua Well # 2	9/9/05 1740	9/16/05 1429	ND		ND	

FOOTNOTES:

 $\overline{ND} = None Detected$ * = A fluorescence t

= A fluorescence peak is present which does not meet all the criteria for a positive dye result. However, it has been calculated as though it were the tracer dye.

Dye Trace: Mill Creek/Lee Sinks, July-December, 2005; Appendix IIA

Project name:Mill Creek/Lee Sinks Dye Trace, Weeks 7-8 and 9-10Samples collected by:KES staffDate samples shipped:September 22 and October 6, 2005Date samples rec'd at OUL:September 23 and October 7, 2005Date samples analyzed by OUL:October 10 and 11, 2005

Table 1. Results for charcoal and water samples analyzed for the presence of fluorescein and rhodamine WT (RWT) dyes.Peak wavelengths are reported in nanometers (nm); dye concentrations are reported in parts per billion (ppb).All results are for
charcoal unless otherwise indicated.

OUL	Stn.	Station Name	Date/Time	Date/Time	Fluor	rescein	RV	WТ
#	#		Placed	Collected	Peak	Conc.	Peak	Conc.
P3882	4	Hornsby Spring Daily	Water	8/29/05 1555	ND		ND	
P3883	4	Hornsby Spring Daily	Water	9/2/05 1415	ND		ND	
P3884	4	Hornsby Spring Daily	Water	9/6/05 1620	ND		ND	
P3885	4	Hornsby Spring Daily	Water	9/9/05 1437	ND		ND	
P3886	111	River Ranch Well	Water	8/26/05 1548	ND		577.4	0.145
P3887	111	River Ranch Well	Water	9/2/05 1443	ND		ND	
P3888	111	River Ranch Well	Water	9/9/05 1500	ND		ND	
P3904	1	Hornsby Spring - Main	9/19/05 1631	9/23/05 1413	515.9	4.85	568.8	9.54
P3905	1	Hornsby Spring - Main	9/23/05 1413	9/30/05 1405	516.3	4.61	568.4	11.0
P3906	3	Darby Spring	8/26/05 1635	9/2/05 1358	ND		570.1	2.93
P3907	3	Darby Spring	9/2/05 1358	9/9/05 1418	ND		570.0	2.50
P3908	111	River Ranch Well	9/23/05 1439	9/30/05 1511	516.1	3.51	568.8	11.2
P3909	112	Main Shop Well	8/26/05 1533	9/2/05 1432	ND		ND	
P3910	112	Main Shop Well	9/2/05 1432	9/9/05 1446	ND		ND	
P3911	113	Residence 6 Well	8/26/05 1538	9/2/05 1451	ND		ND	
P3912	113	Residence 6 Well	9/2/05 1451	9/9/05 1510	ND		ND	
P3913	114	Chalet Well	8/26/05 1604	9/2/05 1456	ND		ND	
(Footnot	tes at end of	Table)					(c	ontinued)

Table 1 Peak w	1. Results for avelengths a	or charcoal and water samples analy are reported in nanometers (nm); dye	yzed for the pr concentrations a	esence of fluor re reported in	r escein and parts per b	d rhodami illion (ppb)	ne WT (RV). All resu	WT) dyes. Its are for
OUL	Stn.	Station Name	Date/Time	Date/Time	Fluor	escein	R	WT
#	#		Placed	Collected	Peak	Conc.	Peak	Conc.
(continu	ied)		·					
P3914	114	Chalet Well	9/2/05 1456	9/9/05 1515	ND		ND	
P3915	121	Copeland Well	9/16/05 1503	9/23/05 1635	ND		ND	
P3916	121	Copeland Well	9/23/05 1635	9/30/05 1727	ND		ND	
P3917	122	Tropic Traditions Well	9/23/05 1637	9/30/05 1541	ND		ND	
P3918	22	Santa Fe River Rise	9/16/05 1625	9/23/05 1532	ND		ND	
P3919	22	Santa Fe River Rise	9/23/05 1532	10/5/05 1408	ND		ND	
P3920	Labora	tory control charcoal blank						
P3921	17	Poe Spring Run	9/19/05 1724	9/28/05 1824	ND		ND	
P3922	17	Poe Spring Run	9/28/05 1824	10/5/05 1216	ND		ND	
P3923	101	High Springs Well # 1 (West)	9/16/05 1338	9/23/05 1620	ND		ND	
P3924	101	High Springs Well # 1 (West)	9/23/05 1620	10/3/05 1543	ND		ND	
P3925	104	Alachua Well # 2	9/23/05 1658	10/3/05 1431	ND		ND	
P3926	111T	River Ranch Well Water System	Water	9/30/05 1507	ND		ND	

FOOTNOTES:

ND = None Detected

Dye Trace: Mill Creek/Lee Sinks, July-December, 2005; Appendix IIA

Project name:Mill Creek/Lee Sinks Dye Trace, Weeks 9-10 and 11-13Samples collected by:KES staffDate samples shipped:October 6 and 25Date samples rec'd at OUL:October 7 and 26, 2005Date samples analyzed by OUL:October 27 and November 1, 2005

Table 1. Results for charcoal samplers analyzed for the presence of fluorescein and rhodamine WT (RWT) dyes. Peak wavelengths are reported in nanometers (nm); dye concentrations are reported in parts per billion (ppb). OUL Stn. Station Name Date/Time Date/Time Fluorescein RWT # # Placed Collected Peak Conc. Peak Conc. 1 тт 0/20/05 1405 10/7/05 1400 5165 1 20 0.04 D4162 5 (0 7 alars Carali **١** *٢* ·

4163	1	Hornsby Spring - Main	9/30/05 1405	10/ //05 1409	516.5	4.28	568.7	8.04
P4164	1	Hornsby Spring - Main	10/7/05 1409	10/13/05 1350	516.7	2.32	571.1	4.15
P4165	1	Hornsby Spring - Main	10/13/05 1350	10/20/05 1619	516.4	3.11	569.0	5.65
P4166	17	Poe Spring Run	10/5/05 1216	10/13/05 1448	ND		ND	
P4167	17	Poe Spring Run	10/13/05 1448	10/22/05 1512	ND		ND	
P4168	101	High Springs Well # 1 (West)	10/3/05 1543	10/13/05 1312	ND		ND	
P4169	101	High Springs Well # 1 (West)	10/13/05 1312	10/20/05 1554	ND		ND	
P4170	3	Darby Spring	8/19/05 1500	8/26/05 1635	ND		ND	
P4259	3	Darby Spring	9/9/05 1418	9/15/05 1627	ND		569.0 *	1.84
P4261	3	Darby Spring	8/15/05 1520	8/19/05 1500	ND		568.6 *	2.27
P4262	3	Darby Spring	9/15/05 1627	9/23/05 1355	ND		567.8 *	2.22

FOOTNOTES:

ND = None Detected

* = A fluorescence peak is present which does not meet all the criteria for a positive dye result. However, it has been calculated as though it were the tracer dye.

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Jam	ury 18, 2006
<section-header><section-header><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header>		
Mr. Peter Butt Karst Environmental Services, Inc. 5779 NE County Road 340 High Springs, Florida 32643 RE: Mill Creek / Lee Sinks Dye Trace, weeks 14+ Analysis results for charcoal samplers shipped January 10, 2006 Ozark Underground Laboratory (OUL) numbers P5526 through P5530 Dear Mr. Butt: We have completed analysis of charcoal samplers received at the OUL on January 12, 2006. We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based upon standards routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% diluent; the RWT is a 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional sampling information is available on the enclosed analysis graphs. Sincerely, Thomas J. Aley, PHG and RG Enclosures:) Table 1 - Analysis results for charcoal samplers 2. Sample Collection Data Sheet 3. Sample Collection Data Sheet 4. Sample analysis graphs.	CERTIFIC.	ATE OF ANALYSIS
Karst Environmental Services, Inc. 5779 NE County Road 340 High Springs, Florida 32643 RE: Mill Creek / Lee Sinks Dye Trace, weeks 14+ Analysis results for charcoal samplers shipped January 10, 2006 Ozark Underground Laboratory (OUL) numbers P5526 through P5530 Dear Mr. But: We have completed analysis of charcoal samplers received at the OUL on January 12, 2006. We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based upon standards routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% diluent; the RWT is a 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional sampling information is available on the enclosed analysis graphs. Sincerely, Thomas J. Aley, PHG and RG Enclosures: 1) Table 1 - Analysis results for charcoal samplers 2) Sample Collection Data Sheet 3) Discrepancy sheet 4) Sample analysis graphs. Enclosures: 2) Sample analysis graphs.	Mr. Peter Butt	
 S779 NE County Read 340 High Springs, Florida 32643 RE: Mill Creek / Lee Sinks Dye Trace, weeks 14+ Analysis results for charcoal samplers shipped January 10, 2006 Ozark Underground Laboratory (OUL) numbers P5526 through P5530 Dear Mr. But: We have completed analysis of charcoal samplers received at the OUL on January 12, 2006. We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based upon standards routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% diluent; the RWT is a 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional sampling information is available on the enclosed analysis graphs. Sincerely, Sincerely, Thomas J. Aley, PHG and RG Enclosures: Table 1 - Analysis results for charcoal samplers Sample Collection Data Sheet Discrepancy sheet Sample analysis graphs 	Karst Environmental Services, Inc.	
 RE: Mill Creek / Lee Sinks Dye Trace, weeks 14+ Analysis results for charcoal samplers shipped January 10, 2006 Ozark Underground Laboratory (OUL) numbers P5526 through P5530 Dear Mr. But: We have completed analysis of charcoal samplers received at the OUL on January 12, 2006. We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based upon standards routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% diluent; the RWT is a 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional sampling information is available on the enclosed analysis graphs. Sincerely, Thomas J. Aley, PHG and RG Enclosures: Table 1 - Analysis results for charcoal samplers Sample Collection Data Sheet Sample analysis graphs 	5779 NE County Road 340 High Springs Florida 32643	
 RE: Mill Creek / Lee Sinks Dye Trace, weeks 14+ Analysis results for charcoal samplers shipped January 10, 2006 Ozark Underground Laboratory (OUL) numbers P5526 through P5530 Dear Mr. Butt: We have completed analysis of charcoal samplers received at the OUL on January 12, 2006. We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based upon standards routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% diluent; the RWT is a 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional sampling information is available on the enclosed analysis graphs. Sincerely, Thomas J. Aley, PHG and RG Enclosures: Table 1 - Analysis results for charcoal samplers Sample Collection Data Sheet Sample Collection Data Sheet Sample analysis graphs 	Tigh Springs, Fischer S2005	
Dear Mr. Butt: We have completed analysis of charooal samplers received at the OUL on January 12, 2006. We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based upon standards routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% diluent; the RWT is a 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional sampling information is available on the enclosed analysis graphs. Sincerely, Thomas J. Aley, PHG and RG Enclosures: 1) Table 1 - Analysis results for charooal samplers 2) Sample Collection Data Sheet 3) Discrepancy sheet 4) Sample analysis graphs. Enclosures:	RE: Mill Creek / Lee Sinks Dye Trace, we Anotheris membre for charged samplers	eks 14+ shinned January 10, 2006
Dear Mr. But: We have completed analysis of charcoal samplers received at the OUL on January 12, 2006. We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based upon standards routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% diluent; the RWT is a 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional sampling information is available on the enclosed analysis graphs. Sincerely, Thomas J. Aley, PHG and RG Enclosures: 1 Table 1 - Analysis results for charcoal samplers 2) Sample Collection Data Sheet 3) Discrepancy sheet 4) Sample analysis graphs	Ozark Underground Laboratory (OUL) numbers P5526 through P5530
We have completed analysis of charcoal samplers received at the OUL on January 12, 2006. We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based upon standards routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% diluent; the RWT is a 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional sampling information is available on the enclosed analysis graphs. Sincerely, Thomas J. Aley, PHG and RG Enclosures: 1) Table 1 - Analysis results for charcoal samplers 2) Sample Collection Data Sheet 3) Discrepancy sheet 4) Sample analysis graphs.	Dear Mr. Butt:	
We have indicated the OUL number for each of these samplers on the enclosed table. The fluorescein and rhodamine WT (RWT) dye concentrations are based upon standards routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% diluent; the RWT is a 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional sampling information is available on the enclosed analysis graphs. Sincerely, Thomas J. Aley, PHG and RG Enclosures: 1) Table 1 - Analysis results for charcoal samplers 2) Sample Collection Data Sheet 3) Discrepancy sheet 4) Sample analysis graphs. Edoes/coa/kes48	We have completed analysis of chara-	oal samplers received at the OUL on January 12, 2006.
The fluorescein and rhodamine WT (RWT) dye concentrations are based upon standards routinely used at the OUL. The fluorescein is a mixture of 75% dye and 25% diluent; the RWT is a 20% solution. The concentrations are based upon the as-sold weight of the dye. A summary of the results is presented in Table 1. Additional sampling information is available on the enclosed analysis graphs. Sincerely, Thomas J. Aley, PHG and RG Enclosures: 1) Table 1 - Analysis results for charcoal samplers 2) Sample Collection Data Sheet 3) Discrepancy sheet 4) Sample analysis graphs	We have indicated the OUL number for each	of these samplers on the enclosed table.
A summary of the results is presented in Table 1. Additional sampling information is available on the enclosed analysis graphs. Sincerely, Thomas J. Aley, PHG and RG Enclosures: 1) Table 1 - Analysis results for charocal samplers 2) Sample Collection Data Sheet 3) Discrepancy sheet 4) Sample analysis graphs Educateoutleest	The fluorescein and rhodamine WT routinely used at the OUL. The fluorescein i 20% solution. The concentrations are based u	(RWT) dye concentrations are based upon standards s a mixture of 75% dye and 25% diluent; the RWT is a pon the as-sold weight of the dye.
Sincerely, Thomas J. Aley, PHG and RG Enclosures: 1) Table 1 - Analysis results for charocal samplers 2) Sample Collection Data Sheet 3) Discrepancy sheet 4) Sample analysis graphs Educateoutlees43	A summary of the results is presen available on the enclosed analysis graphs.	ted in Table 1. Additional sampling information is
Thomas J. Aley, PHG and RG Enclosures: 1) Table 1 - Analysis results for charocal samplers 2) Sample Collection Data Sheet 3) Discrepancy sheet 4) Sample analysis graphs Edocsteosikes43	Sincerely,	
Thomas J. Aley, PHG and RG Enclosures: 1) Table 1 - Analysis results for charocal samplers 2) Sample Collection Data Sheet 3) Discrepancy sheet 4) Sample analysis graphs Edoes/con/kes48	The TAD	
Thomas J. Aley, PHG and RG Enclosures: 1) Table 1 - Analysis results for charocal samplers 2) Sample Collection Data Sheet 3) Discrepancy sheet 4) Sample analysis graphs E'does/teod/tes43	Women ~ HEry	
Enclosures: 1) Table 1 - Analysis results for charocal samplers 2) Sample Collection Data Sheet 3) Discrepancy sheet 4) Sample analysis graphs E/does/cos/kes48	Thomas J. Aley, PHG and RG	
 Sample Collection Data Sheet Discrepancy sheet Sample analysis graphs E/docs/con/kes48	Enclosures: 1) Table 1 - Analysis results	for charooal samplers
4) Sample analysis graphs E/does/con/kes48	 Sample Collection Data S Dimensional Action Data S 	abeet
El doesileo aikes 45	 Discrepancy sneet Sample analysis graphs 	
		E doute offered
		E-800-008 ND++

Dye Trace: Mill Creek/Lee Sinks, July-December, 2005; Appendix IIA

Project name:Mill Creek/Lee Sinks Dye Trace, Weeks 14+Samples collected by:KES staffDate samples shipped:January 10, 2006Date samples rec'd at OUL:January 12, 2006Date samples analyzed by OUL:January 16, 2006

 Table 1. Results for charcoal samplers analyzed for the presence of fluorescein and rhodamine WT (RWT) dyes.
 Peak

 wavelengths are reported in nanometers (nm); dye concentrations are reported in parts per billion (ppb).
 Peak

OUL	Stn.	Station Name	Date/Time	Date/Time	Fluorescein		RWT	
#	#		Placed	Collected	Peak	Conc.	Peak	Conc.
P5526	1	Hornsby Spring - Main	10/20/05 1619	10/28/05 1342	516.2	2.09	567.8	3.75
P5527	1	Hornsby Spring - Main	10/28/05 1342	11/14/05 1624	516.4 *	2.74	566.8	5.17
P5528	1	Hornsby Spring - Main	11/14/05 1624	11/28/05 1535	515.6 *	3.10	566.5	6.72
P5529	1	Hornsby Spring - Main	11/28/05 1535	12/12/05 1435	515.7 *	2.75	566.4 *	5.31
P5530	1	Hornsby Spring - Main	12/12/05 1435	12/27/05 1338	516.5 *	3.17	566.0 *	5.77

FOOTNOTES:

 $ND = None Detected \setminus$

* = A fluorescence peak is present which does not meet all the criteria for a positive dye result. However, it has been calculated as though it were the tracer dye.

	BORATO	AT 15/2	Aley Lane	Protem, M	80 65733	(417) 785-428	9 fax (417) 785-1290	oul@tr
				Apr	il 3, 2006				
			CEI	RTIFICA	TE OF AN	ALVSIS			
Mr. Pe Karst	ter Butt	ntal Servic	es. Inc.						
5779) High S	E County prings, Flo	Road 340 orida 32643							
RE:	Mill Cre	ek / Loe Sir	iks Dye T	race					
	Analysis Ozark Ur	results for nderground	archived (Laborato	charcoal sa ry (OUL) :	mplers shi numbers P	pped October 2 6528 through P	25, 2005 6529		
Dear M	fr. Butt:								
receive sample	We have ad at the G ars on the G	completed OUL on Oc melosed tab	the analy tober 26, ile.	sis you req 2005. W	pested of t e have ind	two archived cl icated the OUI	arcoal sam L number fo	plers from t or each of t	hose hese
routin 20% s	The fluor ely used at olution. Th	escein and the OUL. he concentr	rhodamin The fluor ations are	ne WT (R rescein is a based upo	WT) dye mixture o on the as-so	concentrations f 75% dye and dd weight of th	are based 25% diluen e dye.	upon stand it; the RWT	lards ' is a
availal	A summ ale on the o	ary of the enclosed an	results in alysis gra	s presente phs.	d in Table	1. Addition	al sampling	informatio	m is
Sincer	ely,								
-	Time	- J. Y.	Aler,						
Thoms	s J. Aley,	PHG and R	G /						
Enclos	ures: 1 2 1) Table 1 () Sample () Sample	 Analysi Collection analysis s 	s results fo n Data She graphs	er charcoal et	samplers			
		, output		,				fildocsicoal	ikes/9.doc

Dye Trace: Mill Creek/Lee Sinks, July-December, 2005; Appendix IIA

Project name:	Mill Creek/Lee Sinks Dye Trace
Samples collected by:	KES staff
Date samples shipped:	October 25, 2005
Date samples rec'd at OUL:	October 26, 2005
Date samples analyzed by OUL:	archived samples on March 31, 2006

Table 1 Peak w	Table 1. Results for archived charcoal samplers analyzed for the presence of fluorescein and rhodamine WT (RWT) dyes. Peak wavelengths are reported in nanometers (nm); dye concentrations are reported in parts per billion (ppb).									
OUL	Stn.	Station Name	Date/Time	Date/Time	Fluoresce	luorescein RWT		-		
#	#		Placed	Collected	Peak	Conc.	Peak	Conc.		
P6528	3	Darby Spring	8/1/05 1708	8/7/05 1531	ND		ND			
P6529	3	Darby Spring	8/7/05 1531	8/15/05 1520	ND		ND			

FOOTNOTES:

ND = None Detected

APPENDIX IIB

ANALYTICAL GRAPHS OF ANALYZED CHARCOAL SAMPLES

Dye Trace: Mill Creek/Lee Sinks, July-December, 2005; Appendix IIB

Ozark Underground Laboratory

Matrix: E	lutant					
Placed: 06	5/30/05 16	15	Col	Collected: 07/07/05 14		
Peaks wit	hin the no	ormal range	of tracer of	lyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.

516.0	514.0	518.1	0.00	0.00	0.00	ND			
541.0	538.1	543.9	0.00	0.00	0.00	ND			
568.7	565.4	572.0	0.00	0.00	0.00	ND			
576.2	572.8	579.6	0.00	0.00	0.00	ND			
Peaks close to the normal range of tracer dyes:									

Ozark Underground Laboratory

J

2

576.2

572.8 579.6 0.00

Peaks close to the normal range of tracer dyes:

								ĥ
abritude 1	.Б -						Ą	M
Fluarescence mai	1- \ .5-	h	م م	2:515:2 2:512:2			WW	, N
	0- 460	√√y - +iau	500	520		 560 5	80 Bab	82D
			Wavelen	gth(nm) or	n RF-53011	PC		
Statio OUL Matr	on 1: . num ix: El	Hornsby S ber: P279 utant	Spring - Ma 5	in	Ana	lyzed: 08/	05/05	
Place	ed: 07	/25/05 15	29		Col	lected: 07/2	29/05 1358	
Peak	s witl	hin the no	rmal range	of tracer d	lyes:			
Peak	nm	Left X	Right X	Height	Area	H/A	Conc.	
515.2	2	483.2	546.0	0.52	22.94	0.02	0.468	
541.0)	538.1	543.9	0.00	0.00	0.00	ND	
568 2	7	565.4	572.0	0.00	0.00	0.00	ND	

0.00

ND

0.00

		Özat	rk Underj	ground L	borator	7	
	1.8						
	1.4 -						ĺ۸.
<u>u</u>	1. Z -		4				1, NV/1
Ę	1-						ا نانی
Ē	.B-		۵ کل کر	ኅ	D N	<u>Қ</u> .,	A
100	.6- _A	,	{	۷۱ ۱.۹	A MA	ť\ <i>m</i>	k.1
225	.4 / 4	لمهم		^V ∜y∧	NV	·vų	
E	.z \						
	0-	V.	_	—	_		
	460 4	iad si	0 520 Wavelen	540 gth(nm) or	560 n RF-5301	560 PC	BOD B2D
	Station 1:	Hornsby	Spring - Ma	in			
	OUL nun	nber: P279	96		An	alyzed: 08/	05/05
	Matrix: E	lutant					
	Placed: 0'	7/29/05 13	158		Col	lected: 08/	01/05 1506
	Peaks wit	thin the no	ormal range	of tracer d	lyes:		
	Peak nm	Left X	Right X	Height	Area	H/A	Conc.
	516.0	514.0	518.1	0.00	0.00	0.00	ND
	541.0	538.1	543.9	0.00	0.00	0.00	ND

0.00

0.00

0.70

0.00

0.00

25.97

0.00

0.00

0.03

568.7

576.2

513.4

565.4

572.8

483.2

572.0

579.6

545.0

Peaks close to the normal range of tracer dyes:

В 7 Ģ Fluanscence magnitude 5 تر کری 3 2 닏 ĝ Ē 1 Ð sba 520 540 580 58D Бġр 62D 460 4BO Wavelength(nm) on RF-5301PC Station 1: Hornsby Spring - Main OUL number: P3654 Analyzed: 09/21/05 Matrix: Elutant Placed: 08/01/05 1506 Collected: 08/04/05 1353

Peaks within the normal range of tracer dyes:									
Peak nm	Left X	Right X	Height	Area	H/A	Conc.			
516.0	514.0	518.1	0.00	0.00	0.00	ND			
541.0	538.1	543.9	0.00	0.00	0.00	ND			
568.7	565.4	572.0	0.00	0.00	0.00	ND			
576.2	572.8	579.6	0.00	0.00	0.00	ND			
Peaks close to the normal range of tracer dyes:									

Ozark Underground Laboratory

ND

ND

0.530

Peaks within the normal range of tracer dyes:										
Peak nm	Left X	Right X	Height	Area	H/A	Conc.				
516.0	514.0	518.1	0.00	0.00	0.00	ND				
541.0	538.1	543.9	0.00	0.00	0.00	ND				
568.7	565.4	572.0	0.00	0.00	0.00	ND				
576.2	572.8	579.6	0.00	0.00	0.00	ND				
Peaks clo	Peaks close to the normal range of tracer dyes:									

516.0	514.0	518.1	0.00	0.00	0.00	ND		
541.0	538.1	543.9	0.00	0.00	0.00	ND		
568.9	550.3	594.2	5.92	138.87	0.04	14.4		
576.2	572.8	579.6	0.00	0.00	0.00	ND		
Peaks close to the normal range of tracer dyes:								
518.2	484.6	550.3	2.82	135.87	0.02	2.82		

I cak mm	Lett A	rugin A	mengine	mea	11/11	Cone.
516.0	514.0	518.1	0.00	0.00	0.00	ND
541.0	538.1	543.9	0.00	0.00	0.00	ND
569.5	547.1	592.0	12.41	282.55	0.04	30.0
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the no	ormal range	e of tracer	dyes:		
537.8	484.4	547.1	3.11	109.74	0.03	3.16

538.0

484.6

548.2

4.36

0.03

. 167.86 4.83

Peak nm	Left X	Right X	Height	Area	H/A	Con
516.4	484.0	529.2	3.55	90.28	0.04	1.91
541.0	538.1	543.9	0.00	0.00	0.00	ND
569.6	546.6	598.8	8.07	200.28	0.04	21.2
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dyes:		
527.0	520.2	546.6	2.50	42.15	0.06	1.21

Peak nm	Left X	Right X	Height	Area	H/A	Conc
516.4	485.2	530.6	6.30	159.22	0.04	3.36
541.0	535.2	541.8	0.00	0.00	0.00	ND
569.8	546.6	594.2	10.79	260.84	0.04	27.7
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dyes:		
537.4	530.6	546.6	2.99	49.17	0.06	1.41

Peak nm	Left X	Right X	Height	Area	H/A	Conc.	
516.1	485.0	545.4	6.74	193.75	0.03	4.09	
541.0	538.1	543.9	0.00	0.00	0.00	ND	
569.2	545.4	599.4	6.87	170.31	0.04	18.1	
576.2	572.8	579.6	0.00	0.00	0.00	ND	
Peaks close to the normal range of tracer dyes:							

576.2

572.8

579.6

Peaks close to the normal range of tracer dyes:

0.00

0.00

0.00

ND

Peaks within the normal range of tracer dyes:						
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.3	484.6	543.8	6.07	146.56	0.04	3.13
541.0	538.1	543.9	0.00	0.00	0.00	ND
569.7	551.4	589.4	2.94	56.64	0.05	5.90
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks close to the normal range of tracer dyes:						

Peaks close to the normal range of tracer dyes:

Peaks close to the normal range of tracer dyes:

Peaks wit	hin the no	rmal range	of tracer c	lyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc
516.5	485.0	550.0	6.44	200.49	0.03	4.28
540.9	538.1	543.9	0.00	0.00	0.00	ND
568.7	550.0	601.0	3.46	86.92	0.04	8.04
576.1	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dves:		

ark Underground Laboratory Û 22 r. Fluanscence magnitude 3 2 Ð 460 4BO sba 5Ż0 540 580 58D БÓD 6ŻD Wavelength(nm) on RF-5301PC Station 1: Hornsby Spring - Main OUL number: P4165 Analyzed: 10/27/05 Matrix: Elutant Placed: 10/13/05 1350 Collected: 10/20/05 1619 Peaks within the normal range of tracer dyes: Peak nm Left X Height H/A Conc. Right X Area 516.4 484.8 548.9 4.41 145.72 0.03 3.11 540.9 538.1 543.9 0.00 0.00 0.00 ND

569.0

576.1

548.9

572.8

592.0

579.6

Peaks close to the normal range of tracer dyes:

2.36

0.00

61.16

0.00

0.04

0.00

5.65

ND

Placed: 10	0/28/05 13	42	Collected: 11/14/05 1624			
Peaks wit	hin the no	ormal range	of tracer d	lyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.4	484.6	550.8	4.24	135.58	0.03	2.74
540.9	538.1	543.9	0.00	0.00	0.00	ND
566.8	550.8	586.4	2.27	55.91	0.04	5.17

0.00

0.00

ND

576.1

572.8

538.1

550.5

572.8

540.9

566.4

576.1

543.9

591.0

579.6

Peaks close to the normal range of tracer dyes:

579.6

Peaks close to the normal range of tracer dyes:

rk Underground Laboratory Ôz 6 5 Fluansscence magnitude 3 z Ð 460 4BO sba 5Ż0 540 580 58D БÓD 6ŻD Wavelength(nm) on RF-5301PC Station 1: Hornsby Spring - Main OUL number: P5529 Analyzed: 01/16/06 Matrix: Elutant Placed: 11/28/05 1535 Collected: 12/12/05 1435 Peaks within the normal range of tracer dyes: Peak nm Left X Height H/A Conc. Right X Area 515.7 484.6 550.5 3.63 136.25 0.03 2.75

0.00

2.02

0.00

0.00

57.50

0.00

0.00

0.04

0.00

ND

5.31

ND

OUL number: P2797	Analyzed: 08/05/05
Matrix: Elutant	
Placed: 07/25/05 1533	Collected: 07/29/05 1407
Peaks within the normal range of tracer dyes:	

		<i>u</i>		~		
Peak nm	Left X	Right X	Height	Area	H/A	Conc
516.0	514.0	518.1	0.00	0.00	0.00	ND
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the r	normal rang	e of tracer	dyes:		
520.2	483.6	549.0	2.62	111.28	0.02	2.27
564.6	549.0	589.2	1.02	30.45	0.03	2.89

568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks c	lose to the	normal ran	ge of trace	r dyes:		
520.8	482.2	549.4	2.84	125.05	0.02	2.55
564.8	549.4	588.4	1 36	40 74	0.03	3 87

My Contraction Fluanscence magnitude 518,0 3 2 460 4BO sba 5Ż0 540 580 58D БÓD 6ŻD Wavelength(nm) on RF-5301PC Station 2: Hornsby Spring Landing OUL number: P2899 Analyzed: 08/12/05 Matrix: Elutant Placed: 08/01/05 1504 Collected: 08/04/05 1401 Peaks within the normal range of tracer dyes:

Peak nm	Left X	Right X	Height	Area	H/A	Conc.
518.0	485.0	556.4	1.81	67.20	0.03	1.37
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
573.2	556.4	587.4	0.57	14.49	0.04	0.828
Peaks clo	se to the n	ormal rang	e of tracer	dves:		

Ozark Underground Laboratory

Matrix: E	lutant					
Placed: 08	8/07/05 16	Col	Collected: 08/10/05 123			
Peaks wit	hin the no	rmal range	of tracer d	lyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.

5160	101 0	5177	2 22	106 66	0.02	2.21	
510.2	464.6	347.7	2.55	100.00	0.02	2.21	
541.0	538.1	543.9	0.00	0.00	0.00	ND	
568.8	547.7	594.8	5.61	133.75	0.04	13.3	
576.2	572.8	579.6	0.00	0.00	0.00	ND	
Peaks close to the normal range of tracer dyes:							

516.0	514.0	518.1	0.00	0.00	0.00	ND
541.0	538.1	543.9	0.00	0.00	0.00	ND
569.3	545.3	592.2	16.52	385.95	0.04	38.4
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks cl	ose to the	normal ran	ge of trace	r dyes:		
525.4	485.2	545.3	2.83	128.10	0.02	2.65

517.0	485.2	526.1	1.47	34.86	0.04	0.741
541.0	538.1	543.9	0.00	0.00	0.00	ND
569.0	546.6	588.0	6.39	136.24	0.05	14.3
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks cl	lose to the	normal ran	ge of trace	er dyes:		
535.6	526.1	546.6	1.07	20.13	0.05	0.582

		0		~		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
517.0	484.8	529.8	2.43	61.07	0.04	1.30
538.6	529.8	549.1	1.12	22.74	0.05	0.657
569.2	549.1	592.8	6.13	141.30	0.04	14.8
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks close	se to the n	ormal rang	e of tracer	dves:		

OUL number: P6528				Ana	Analyzed: 03/31/06			
Matrix: Elutant								
Placed: 08/01/05 1708				Col	Collected: 08/07/05 1531			
Peaks within the normal range of tracer dyes:								
Peak nm	Left X	Right X	Height	Area	H/A	Conc.		
517.6	484.0	549.1	0.98	40.78	0.02	0.822		
540.9	538.1	543.9	0.00	0.00	0.00	ND		
567.0	549.1	590.6	0.57	14.07	0.04	1.18		
576.1	572.8	579.6	0.00 0.00 0.00 ND					
Peaks close to the normal range of tracer dyes:								

Ozark Underground Laboratory .8 Fluansscence magnitude .e .2 Ð 540 460 4BO sba 5Ż0 580 58D БÓD 6ŻD Wavelength(nm) on RF-5301PC Station 3: Darby Spring OUL number: P4261 Analyzed: 11/01/05 Matrix: Elutant Placed: 08/15/05 1520 Collected: 08/19/05 1500 Peaks within the normal range of tracer dyes: Peak nm Left X Height H/A Conc. Right X Area 547.5 517.3 484.8 0.92 39.55 0.02 0.844 540.9 538.1 543.9 0.00 0.00 ND 0.00

576.1

547.5

572.8

591.6

579.6

Peaks close to the normal range of tracer dyes:

0.84

0.00

24.82

0.00

0.03

0.00

Ozark Underground Laboratory

521.0

483.2

555.3

1.38

0.02

65.73

1.32

2.27

ND

Peaks wit	hin the not	rmal range	of tracer d	yes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.0	514.0	518.1	0.00	0.00	0.00	ND
540.9	538.1	543.9	0.00	0.00	0.00	ND
570.1	552.4	586.4	1.58	29.61	0.05	2.93
576.1	572.8	579.6	0.00	0.00	0.00	ND
Peaks close	se to the n	ormal rang	e of tracer	dyes:		
521.4	484.4	552.4	0.83	35.07	0.02	0.000

Ozark Underground Laboratory

Peaks within the normal range of tracer dyes:									
Peak nm	Left X	Right X	Height	Area	H/A	Conc.			
517.2	485.0	544.8	0.71	28.69	0.02	0.614			
540.9	538.1	543.9	0.00	0.00	0.00	ND			
570.0	544.8	584.6	1.24	25.33	0.05	2.50			
576.1	572.8	579.6	0.00	0.00	0.00	ND			
Peaks clo	Peaks close to the normal range of tracer dyes:								

Peak nm	Left X	Right X	Height	Area	H/A	Conc
514.2	484.2	547.8	0.95	37.76	0.03	0.806
540.9	538.1	543.9	0.00	0.00	0.00	ND
569.0	547.8	586.6	0.84	20.14	0.04	1.84
576.1	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dves:		

Ozark Underground Laboratory

540.9 538.1 543.9 0.00 0.00 0.00 567.8 545.2 589.2 0.77 24.34 0.03 576.1 572.8 579.6 0.00 0.00 0.00 Peaks close to the normal range of tracer dyes:

ND

2.22

ND

Peaks within the normal range of tracer dyes:								
Peak nm	Left X	Right X	Height	Area	H/A	Conc.		
517.0	484.4	550.6	1.54	59.60	0.03	1.24		
541.0	538.1	543.9	0.00	0.00	0.00	ND		
569.8	550.6	593.0	0.61	17.20	0.04	1.78		
576.2	572.8	579.6	0.00	0.00	0.00	ND		

Ozark Underground Laboratory

I cak mm	Lett A	rugitt A	meight	mea	11/11	Cone
516.4	485.0	553.4	1.33	55.48	0.02	1.15
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.6	553.4	584.0	0.80	14.13	0.06	1.46
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dyes:		

Peaks with	hin the no	rmal range	of tracer d	yes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc
517.8	485.0	553.4	1.69	73.12	0.02	1.52
541.0	538.1	543.9	0.00	0.00	0.00	ND
569.5	553.4	587.4	1.84	42.03	0.04	4.35
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks close	se to the n	ormal rang	e of tracer	dyes:		

Ozark Underground Laboratory

Peaks within the normal range of tracer dyes:								
Peak nm	Left X	Right X	Height	Area	H/A	Conc.		
516.2	485.0	547.1	1.38	60.69	0.02	1.26		
541.0	538.1	543.9	0.00	0.00	0.00	ND		
569.3	547.1	593.8	2.57	60.75	0.04	6.28		
576.2	572.8	579.6	0.00	0.00	0.00	ND		
Peaks close to the normal range of tracer dyes:								

576.2

541.8

572.8

594.6

579.6

Peaks close to the normal range of tracer dyes:

14.03

0.00

331.04

0.00

0.04

0.00

34 5

ND

Peaks close to the normal range of tracer dyes:

Matrix: E	lutant					
Placed: 07/25/05 1800				Collected: 08/01/05 185		
Peaks wit	hin the no	ormal range	of tracer d	lyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
517.8	482.8	552.2	3.18	146.25	0.02	2.99
541.0	520.1	542.0	0.00	0.00	0.00	NID

517.8	482.8	552.2	3.18	146.25	0.02	2.99
541.0	538.1	543.9	0.00	0.00	0.00	ND
567.8	552.2	592.0	1.36	38.50	0.04	3.66
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks cl	ose to the	normal ran	ge of trace	r dyes:		

Ozark Underground Laboratory

Ozark Underground Laboratory 518,4 ANN MA. 2.5 Fluanscence magnitude Z 1.5 Ð 540 460 4BO sba 5Ż0 580 58D БÓD 62D Wavelength(nm) on RF-5301PC Station 11: Poe Spring Shallow Vent OUL number: P2903 Analyzed: 08/12/05 Matrix: Elutant Placed: 08/04/05 1748 Collected: 08/07/05 1432

Peaks within the normal range of tracer dyes:									
Peak nm	Left X	Right X	Height	Area	H/A	Conc			
518.4	484.6	551.0	2.09	78.88	0.03	1.61			
541.0	538.1	543.9	0.00	0.00	0.00	ND			
568.7	565.4	572.0	0.00	0.00	0.00	ND			
576.2	572.8	579.6	0.00	0.00	0.00	ND			
Peaks clo	se to the n	ormal rang	e of tracer	dves:					

Ozark Underground Laboratory

Left X	Right X	Height	Area	H/A	Con
514.0	518.1	0.00	0.00	0.00	ND
538.1	543.9	0.00	0.00	0.00	ND
565.4	572.0	0.00	0.00	0.00	ND
572.8	579.6	0.00	0.00	0.00	ND
to the no	rmal range	of tracer d	yes:		
	2eft X 514.0 538.1 565.4 572.8 to the no:	Left X Right X \$14.0 \$18.1 \$38.1 \$43.9 \$65.4 \$72.0 \$72.8 \$79.6 to the normal range	Left X Right X Height 514.0 518.1 0.00 538.1 543.9 0.00 65.4 572.0 0.00 572.8 579.6 0.00 to the normal range of tracer d 0.00	Left X Right X Height A Area i14.0 518.1 0.00 0.00 i38.1 543.9 0.00 0.00 i65.4 572.0 0.00 0.00 i72.8 579.6 0.00 0.00 to the normal range of tracer dyes: 1 1	Left X Right X Height Area H/A i14.0 518.1 0.00 0.00 0.00 i38.1 543.9 0.00 0.00 0.00 654.4 572.0 0.00 0.00 0.00 i72.8 579.6 0.00 0.00 0.00 to the normal range of tracer dyes: 1 1 1 1

Station 11: Poe Spring Shallow Vent	
OUL number: P3004	Analyzed: 08/24/05
Matrix: Elutant	
Placed: 08/10/05 1530	Collected: 08/13/05 1432
Peaks within the normal range of tracer dyes:	

Peak nm	Left X	Right X	Height	Area	H/A	Conc.
517.4	484.0	547.8	1.75	59.62	0.03	1.23
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the r	normal rang	e of tracer	dyes:		

Ozark Underground Laboratory

568.7

576.2

538.1

565.4

572.8

543.9

572.0 579.6

Peaks close to the normal range of tracer dyes:

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

ND

ND ND

Collected: 08/01/05 1901

Deelse wit	hin the nee		of the sea i	kun n		
Peaks wit	inn the no	ormai range	of tracer c	iyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.0	514.0	518.1	0.00	0.00	0.00	ND
541.0	538.1	543.9	0.00	0.00	0.00	ND
567.8	549.8	591.8	1.94	63.30	0.03	6.02
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dyes:		
518.6	483.0	549.8	4.84	210.13	0.02	4.29

Matrix: Elutant	
Placed: 08/07/05 1420	Collected: 08/13/05 1408

Peak nm	Left X	Right X	Height	Area	H/A	Conc.
517.1	485.2	551.8	4.11	167.79	0.02	3.47
541.0	538.1	543.9	0.00	0.00	0.00	ND
569.6	551.8	593.0	1.71	47.69	0.04	4.74
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dyes:		

Peaks wit	hin the no	rmal range	of tracer d	yes:				
Peak nm	Left X	Right X	Height	Area	H/A	Conc.		
517.4	484.2	547.6	4.09	162.24	0.03	3.36		
541.0	538.1	543.9	0.00	0.00	0.00	ND		
568.7	565.4	572.0	0.00	0.00	0.00	ND		
576.2	572.8	579.6	0.00	0.00	0.00	ND		
Peaks close	se to the n	ormal rang	e of tracer	dyes:				
563.2	547.6	586.2	1.53	48.05	0.03	4.78		

518.1	485.2	557.3	4.09	182.92	0.02	3.86
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.6	557.3	595.4	1.75	48.04	0.04	5.09
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks cl	ose to the	normal ran	ge of trace	r dyes:		

i cans wit	min the no	innai range	or tracer u	yes.		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
517.2	485.4	554.7	3.83	172.77	0.02	3.65
541.0	538.1	543.9	0.00	0.00	0.00	ND
569.4	554.7	598.2	1.53	45.89	0.03	4.87
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dves:		

547.7

586.6

2.02

61.33

0.03

OUL number: P3743	An	alyzed: 09/26/05		
Matrix: Elutant				
Placed: 09/06/05 1526	Co	Collected: 09/12/05 143		
Peaks within the normal ra	e of tracer dyes:			
Pook nm Loft V Dight	Height Area	H/A Cono		

Реак пт	Left A	Right A	Height	Area	H/A	Con		
517.0	484.6	549.6	2.95	117.52	0.03	2.51		
541.0	538.1	543.9	0.00	0.00	0.00	ND		
567.2	549.6	588.8	0.95	32.00	0.03	3.33		
576.2	572.8	579.6	0.00	0.00	0.00	ND		
Peaks close to the normal range of tracer dyes:								

r cak iiiii	Len A	Kigin A	meigin	Alea	Π/A	Conc		
515.8	483.6	551.6	2.29	87.61	0.03	1.87		
541.0	538.1	543.9	0.00	0.00	0.00	ND		
569.0	551.6	590.6	0.90	15.67	0.06	1.63		
576.2	572.8	579.6	0.00	0.00	0.00	ND		
Peaks close to the normal range of tracer dyes:								

I Caks wit	caks within the normal range of tracer dyes.							
Peak nm	Left X	Right X	Height	Area	H/A	Conc.		
518.0	479.1	547.2	4.89	227.54	0.02	4.87		
540.9	538.1	543.9	0.00	0.00	0.00	ND		
568.6	565.4	572.0	0.00	0.00	0.00	ND		
576.1	573.8	580.8	0.00	0.00	0.00	ND		
Peaks clo	se to the no	ormal range	e of tracer	dyes:				
471.2	461.4	479.1	0.83	10.64	0.08	0.000		
561.6	547.2	591.6	2.27	79.65	0.03	0.000		

474.2

563.8

572.8

461.6

553.6

579.6

485.4

606.8

Peaks close to the normal range of tracer

0.00

0.86

2.68

0.00

17.58

85.85

dyes:

0.00

0.05

0.03

ND

0.000

Materia: Elutent	7 mary2ed: 16/27/05
Matrix: Elutant	
Placed: 10/05/05 1216	Collected: 10/13/05 1448
Peaks within the normal range of tracer dyes:	

r ouno mit	reads what in the normal range of dideer dyes.							
Peak nm	Left X	Right X	Height	Area	H/A	Conc		
515.9	514.0	518.1	0.00	0.00	0.00	ND		
540.9	538.1	543.9	0.00	0.00	0.00	ND		
568.6	565.4	572.0	0.00	0.00	0.00	ND		
576.1	572.8	579.6	0.00	0.00	0.00	ND		
Peaks close to the normal range of tracer dyes:								

Ozark Underground Laboratory

Peak nm	Left X	Right X	Height	Area	H/A	Conc.
517.4	469.0	545.4	3.20	149.72	0.02	3.00
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dyes:		
557.4	545.4	615.2	2.39	101.41	0.02	0.000

510.0	514.0	510.1	0.00	0.00	0.00	TAD.		
541.0	538.1	543.9	0.00	0.00	0.00	ND		
568.7	565.4	572.0	0.00	0.00	0.00	ND		
576.2	572.8	579.6	0.00	0.00	0.00	ND		
Peaks close to the normal range of tracer dyes:								
525.7	483.0	549.3	5.88	247.49	0.02	5.05		
564.6	549.3	591.8	2.89	88.46	0.03	8.41		

Ozark Underground Laboratory B Fluanscence magnitude 6 ᢣ᠕ᠺ Ð 460 4BO sba 520 540 580 58D БĠD 62D Wavelength(nm) on RF-5301PC Station 22: Santa Fe River Rise OUL number: P3002 Analyzed: 08/24/05 Matrix: Elutant Placed: 08/07/05 1736 Collected: 08/13/05 1629 Peaks within the normal range of tracer dyes: Peak nm Left X Right X Height H/A Conc. Area 516.0 514.0 518.1 0.00 0.00 0.00 ND

0.00

0.00

0.00

0.00

0.00

541.0

568.7

576.2

538.1

565.4

572.8

543.9

572.0

579.6

Peaks close to the normal range of tracer dyes:

				N N				
	8-			212				
	7-			ᢞ᠊᠊᠋ᡝ	ι.			
ä	6-		- <i>[</i>		٧2 ١			
ž E	5-		- {		کر	9' E		
Ĕ	4 -		1		ر. ار	ڵ؇؞ڔۨ _ڶ ؋		
5	3-	کلر	<u>/</u>			Ĺ	ή	
5	Z-	م مر _ک ر		<u> </u>	_		ખ	
	1-					<u> </u>	- Jon	
	0-			-	—			vr y i
	46 46	a 448a	5DO Wavelen	520 gth(nm) or	540 RF-53011	5 60 5 PC	ap eqp	820
Stat	tion 22	2: Santa Fe l	River Rise					
OU	L nur	nber: P3528	8		Ana	alyzed: 09/	14/05	
Mat	trix: E	lutant						
Plac	ced: 0	8/13/05 162	20		Col	lected: 08/	19/05 1603	
Pea	ks wi	thin the nor	mal range	of tracer d	yes:			
Pea	k nm	Left X	Right X	Height	Area	H/A	Conc.	
516	i.0	514.0	518.1	0.00	0.00	0.00	ND	
541	.0	538.1	543.9	0.00	0.00	0.00	ND	
569	.6	559.4	602.8	2.88	79.25	0.04	8.40	
576	i.2	572.8	579.6	0.00	0.00	0.00	ND	

Ozark Underground Laboratory

0.00

0.00

0.00

282.83

0.02

5.71

Peaks close to the normal range of tracer dyes:

559.4

522.0

484.2

ND

ND

ND

I cak mm	Lett A	rugin n	meight	mea	11/11	Conc
516.0	514.0	518.1	0.00	0.00	0.00	ND
541.0	538.1	543.9	0.00	0.00	0.00	ND
566.8	555.3	594.4	2.12	60.26	0.04	6.39
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the no	ormal range	e of tracer of	dyes:		
522.6	484.6	555.3	4.97	230.87	0.02	4.88

568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks cl	ose to the i	normal ran	ge of trace	r dyes:		
522.2	485.0	556.1	4.98	236.62	0.02	5.00
562.4	556.1	601.2	2.53	65.15	0.04	6.91

Peak nm	Left X	Right X	Height	Area	H/A	Conc
517.7	483.0	554.1	2.53	106.63	0.02	2.28
541.0	538.1	543.9	0.00	0.00	0.00	ND
570.0	554.1	584.0	1.15	21.27	0.05	2.22
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dves:		

Peaks with	hin the noi	mal range	of tracer d	yes:				
Peak nm	Left X	Right X	Height	Area	H/A	Conc.		
517.0	483.2	547.8	2.98	118.24	0.03	2.52		
541.0	538.1	543.9	0.00	0.00	0.00	ND		
568.7	565.4	572.0	0.00	0.00	0.00	ND		
573.8	560.1	589.4	1.09	26.24	0.04	1.56		
Peaks close	Peaks close to the normal range of tracer dyes:							
554.6	547.8	560.1	0.95	10.76	0.09	0.000		

Peaks wit	hin the no	rmal range	of tracer d	yes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.0	514.0	518.1	0.00	0.00	0.00	ND
540.9	538.1	543.9	0.00	0.00	0.00	ND
568.6	565.4	572.0	0.00	0.00	0.00	ND
576.1	573.8	580.8	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dyes:		
520.2	460.8	546.6	4.38	201.04	0.02	4.30
564.0	546.6	593.2	2.27	81.83	0.03	8.09

Peaks close to the normal range of tracer dyes:

483.8

547.8

601.0

0.78

5.52

3.30

13.79

256.25

111.66

0.06

0.02

0.03

0.000

5.48

0.000

461.2

483.8

547.8

475.4

521.0

Station 101. Then springs wen # 1 (west)	
OUL number: P2802	Analyzed: 08/05/05
Matrix: Elutant	
Placed: 07/25/05 1309	Collected: 07/29/05 1506

Peaks wit	hin the no	rmal range	of tracer d	yes:			
Peak nm	Left X	Right X	Height	Area	H/A	Conc.	
515.8	484.0	546.1	2.10	79.42	0.03	1.62	
541.0	538.1	543.9	0.00	0.00	0.00	ND	
568.7	565.4	572.0	0.00	0.00	0.00	ND	
576.2	572.8	579.6	0.00	0.00	0.00	ND	
Peaks close to the normal range of tracer dyes:							
563.6	546.1	591.8	0.94	24.59	0.04	2.34	

515.6	483.2	551.2	1.66	71.31	0.02	1.46
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks cl	ose to the	normal ran	ge of trace	r dyes:		
564.8	551.2	593.0	0.91	22.19	0.04	2.11

Ģ Jan W Б Fluanscence magnitude 4 3 2 뮏 Ð 580 460 4BO sba 5Ż0 540 58D БÓD 6ŻD Wavelength(nm) on RF-5301PC Station 101: High Springs Well # 1 (West) OUL number: P2904 Analyzed: 08/12/05 Matrix: Elutant Placed: 08/01/05 1131 Collected: 08/04/05 1439

Ozark Underground Laboratory

Peaks within the normal range of tracer dyes:								
Peak nm	Left X	Right X	Height	Area	H/A	Conc.		
517.6	485.2	538.2	1.31	37.85	0.03	0.774		
541.0	538.1	543.9	0.00	0.00	0.00	ND		
568.7	565.4	572.0	0.00	0.00	0.00	ND		
576.2	572.8	579.6	0.00	0.00	0.00	ND		
Peaks clo	Peaks close to the normal range of tracer dyes:							

Ozark Underground Laboratory

Ozark Underground Laboratory

JUL number: P3008	Analyzeu: 08/24/05
Matrix: Elutant	
Placed: 08/07/05 1825	Collected: 08/10/05 1312

Peaks within the normal range of tracer dyes:

				-		
Peak nm	Left X	Right X	Height	Area	H/A	Conc
514.2	485.0	542.8	1.40	47.15	0.03	0.976
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the r	normal rang	e of tracer	dves:		

Ozark Underground Laboratory

Peak nm	Left X	Right X	Height	Area	H/A	Conc	
515.8	485.2	546.4	1.27	44.63	0.03	0.92	
541.0	538.1	543.9	0.00	0.00	0.00	ND	
568.7	565.4	572.0	0.00	0.00	0.00	ND	
576.2	572.8	579.6	0.00	0.00	0.00	ND	
Peaks close to the normal range of tracer dyes:							

reaks wit	min the no	rinai range	or tracer t	iyes.		
Peak nm	Left X	Right X	Height	Area	H/A	Conc
515.2	485.6	541.2	1.51	48.02	0.03	0.994
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dves:		

Ozark Underground Laboratory

576.2 572.8 579.6 0.00 0.00 0.00 Peaks close to the normal range of tracer dyes:

Analyzed: 09/14/05
Collected: 08/23/05 1458

1.1

Peaks wit	nin the no	rmai range	of tracer c	iyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc
516.3	485.0	547.2	1.42	55.33	0.03	1.17
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks close to the normal range of tracer dyes:						

Ozark Underground Laboratory

		Ozark Underground Laboratory
	3-	
	2.5	M
itude	2-	, Av`l
	1.5 -	
199	1-	1 A BUNN
<u>5</u>	.6 -	
	0-	
	4	60 4B0 500 520 540 580 56D 60D 820 Wavelength(nm) on RF-5301PC
	9	Station 101: High Springs Well # 1 (West) DUL number: P3549 Analyzed: 09/14/05
	F	Viatrix: Eutrant Placed: 08/26/05 1721 Collected: 09/02/05 1624

Peaks wit	thin the no	rmal range	of tracer c	iyes:			
Peak nm	Left X	Right X	Height	Area	H/A	Conc.	
514.8	484.2	547.0	1.34	45.54	0.03	0.962	
541.0	538.1	543.9	0.00	0.00	0.00	ND	
568.7	565.4	572.0	0.00	0.00	0.00	ND	
576.2	572.8	579.6	0.00	0.00	0.00	ND	
Peaks close to the normal range of tracer dyes:							

Ozark Underground Laboratory

576.2

572.8

579.6

Peaks close to the normal range of tracer dyes:

0.00

0.00

0.00

ND

Station 101. High Springs Wen # 1 (West)	
OUL number: P3746	Analyzed: 09/26/05
Matrix: Elutant	
Placed: 09/09/05 1654	Collected: 09/16/05 1338

Peaks wit	hin the no	rmal range	of tracer d	yes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
514.0	482.8	544.2	1.04	37.47	0.03	0.800
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks close to the normal range of tracer dyes:						

Ozark Underground Laboratory

		0					
514.6	485.0	544.8	1.28	42.62	0.03	0.912	
540.9	538.1	543.9	0.00	0.00	0.00	ND	
568.6	565.4	572.0	0.00	0.00	0.00	ND	
576.1	572.8	579.6	0.00	0.00	0.00	ND	
Peaks close to the normal range of tracer dyes:							

I Caks wit	min the no	i mai range	or tracer e	iyes.		
Peak nm	Left X	Right X	Height	Area	H/A	Conc
515.8	485.0	543.8	2.22	78.17	0.03	1.67
540.9	538.1	543.9	0.00	0.00	0.00	ND
568.2	543.8	587.2	1.01	25.43	0.04	2.51
576.1	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dves:		

Ozark Underground Laboratory

565.4 572.0 0.00 0.00 576.1 572.8 579.6 0.00 0.00 0.00 Peaks close to the normal range of tracer dyes:

Ozark Underground Laboratory

 OUL number: P4169
 Analyzed: 10/27/05

 Matrix: Elutant
 Placed: 10/13/05 1312

 Collected: 10/20/05 1554
 Collected: 10/20/05 1554

Peaks within the normal range of tracer dyes:							
Peak nm	Left X	Right X	Height	Area	H/A	Conc.	
516.4	484.8	546.2	1.38	48.17	0.03	1.03	
540.9	538.1	543.9	0.00	0.00	0.00	ND	
568.6	565.4	572.0	0.00	0.00	0.00	ND	
576.1	572.8	579.6	0.00	0.00	0.00	ND	
Peaks close to the normal range of tracer dyes:							

OUL number: P2805				Analyzed: 08/05/05			
Matrix: El Placed: 07	utant 1/25/05 14	27		Collected: 07/29/05 1			
Peaks wit	hin the no	rmal range	of tracer d	lyes:			
Peak nm	Left X	Right X	Height	Area	H/A	Conc.	
514.9	1976	548 2	2.22	70.44	0.02	1.4.4	

514.8	487.6	548.2	2.23	70.44	0.03	1.44
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks cl	lose to the	normal ran	ge of trace	er dyes:		

Placed: 07/25/05 1416					lected: 07/	29/05 1635
Peaks wit	hin the no	rmal range	of tracer d	yes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.2	483.6	544.4	1.56	51.35	0.03	1.05

510.2	485.0	544.4	1.50	51.55	0.05	1.05
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks cl	ose to the	normal ran	ge of trace	er dyes:		

576.2 572.8 579.6 0.00 0.00 0.00 Peaks close to the normal range of tracer dyes:

Ozark Underground Laboratory

Peak nm	Left X	Right X	Height	Area	H/A	Conc.
514.9	485.2	543.4	1.10	36.39	0.03	0.753
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dyes:		

Ozark Underground Laboratory

Matrix: El Placed: 08	utant 3/26/05 17	55	Col	lected: 09/	02/05 1709	
Peaks wit	hin the no	rmal range	of tracer d	yes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
515.3	486.6	544.8	2.03	65.25	0.03	1.38

515.5	486.6	544.8	2.03	65.25	0.03	1.38
541.0	538.1	543.9	0.00	0.00	0.00	ND
570.6	551.4	593.6	0.60	23.81	0.03	2.52
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks cl	lose to the	normal ran	ge of trace	er dyes:		

Ozark Underground Laboratory

0.03

1.23

Peaks close to the normal range of tracer dyes:

541.0

1.79

483.0

Ozark Underground Laboratory	
	w

3.5 Fluanscence magnitude 2.5 Z 1 .5 Ð 52a 460 4BO sba 540 580 58D БÓD 6ŻD Wavelength(nm) on RF-5301PC Station 104: Alachua Well # 2 Analyzed: 09/26/05 OUL number: P3748 Matrix: Elutant Placed: 09/09/05 1740 Collected: 09/16/05 1429

Peaks wit	hin the no	rmal range	of tracer d	lyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.0	514.0	518.1	0.00	0.00	0.00	ND
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dyes:		
513.6	483.2	546.0	1.56	52.19	0.03	1.11

Poak nm	L oft Y	Right Y	Height	Area	H/A	Conc
I Cak IIII	LenA	Kight A	rieigin	Alca	10/A	Conc
514.8	485.0	548.7	2.27	74.51	0.03	1.59
540.9	538.1	543.9	0.00	0.00	0.00	ND
569.6	548.7	593.4	0.67	17.62	0.04	1.74
576.1	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dyes:		

OUL number: P2809 Analyzed: 08/05/05 Matrix: Elutant Placed: 07/26/05 1620 Collected: 07/29/05 1540

Peaks wit	hin the no	rmal range	of tracer d	yes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.0	514.0	518.1	0.00	0.00	0.00	ND
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dves:		

Ozark Underground Laboratory

Ozark Underground Laboratory , MAY В Fluanscence magnitude 6 影 Z Ð 460 4BO sba 5Ż0 540 580 58D БÓD 6ŻD Wavelength(nm) on RF-5301PC Station 106: Santa Fe Hills Subdivision Well OUL number: P2906 Analyzed: 08/12/05 Matrix: Elutant Placed: 08/04/05 1514 Collected: 08/07/05 1830 Peaks within the normal range of tracer dyes:

Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.0	514.0	518.1	0.00	0.00	0.00	ND
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dves:		

Ozark Underground Laboratory

Ozark Underground Laboratory

Matrix: Elutant Collected: 08/13/05 1842 Placed: 08/10/05 1353

Fluarescence magnitude

Peaks with Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.0	514.0	518.1	0.00	0.00	0.00	ND
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dves:		

Ozark Underground Laboratory

¥-	
-	North
3-	A. M.
;-	NE CM
	17 BW
·]	./"
\$-	ſ
2-	_ _ /
1 ~	
400. 410. ;	Wavelength(nm) on RF-5301PC
Station 106: Santa	Fe Hills Subdivision Well
OUL number: P3	662 Analyzed: 09/21/05

OUL number: P3662				Analyzed: 09/21/05			
Matrix: E	lutant						
Placed: 08	8/16/05 14	50		Col	lected: 08/	19/05 17	
Peaks wit	hin the no	ormal range	of tracer d	lyes:			
Peak nm	Left X	Right X	Height	Area	H/A	Cone	
516.0	514.0	518.1	0.00	0.00	0.00	ND	
541.0	529 1	542.0	0.00	0.00	0.00	ND	

516.0	514.0	518.1	0.00	0.00	0.00	ND		
541.0	538.1	543.9	0.00	0.00	0.00	ND		
568.7	565.4	572.0	0.00	0.00	0.00	ND		
576.2	572.8	579.6	0.00	0.00	0.00	ND		
Peaks close to the normal range of tracer dyes:								

Ozark Underground Laboratory

0.00

0.00

ND

ND

2.49

ND

541.0 538.1 543.9 0.00 0.00 0.00 570.6 546.4 582.8 1.29 23.52 0.05 576.2 572.8 579.6 0.00 0.00 0.00 Peaks close to the normal range of tracer dyes:

516.0

Ozark Underground Laboratory

OUL number: P3663 Analyzed: 09/21/05 Matrix: Elutant Placed: 08/23/05 1622 Collected: 08/27/05 1411

Peaks wit	hin the no	rmal range	of tracer d	lyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.0	514.0	518.1	0.00	0.00	0.00	ND
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dyes:		

7 6 , w Fluanscence magnitude 5 2 **2**1 M 3 z 9 Ð 540 460 4BO sba 5Ż0 580 58D БÓD 6ŻD Wavelength(nm) on RF-5301PC Station 106: Santa Fe Hills Subdivision Well OUL number: P3729 Analyzed: 09/26/05 Matrix: Elutant Placed: 09/02/05 1646 Collected: 09/09/05 1659 Peaks within the normal range of tracer dyes:

Ozark Underground Laboratory

Peak nm	Left X	Right X	Height	Area	H/A	Cone
516.0	514.0	518.1	0.00	0.00	0.00	ND
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dyes:		

Ozark Underground Laboratory

Ozark Underground Laboratory 7. 6 Fluarescence magnitude 5 4 3 2ĝ ĝ Ē 1 Ð **520 540 560 58D** Wavelength(nm) on RF-5301PC 480 sba БÓD 62D 460 Station 106: Santa Fe Hills Subdivision Well

 OUL number: P3731
 Analyzed: 09/26/05

 Matrix: Elutant
 Placed: 09/16/05 1517
 Collected: 09/21/05 1339

Peaks within the normal range of tracer dyes:							
Peak nm	Left X	Right X	Height	Area	H/A	Conc.	
516.0	514.0	518.1	0.00	0.00	0.00	ND	
541.0	538.1	543.9	0.00	0.00	0.00	ND	
568.7	565.4	572.0	0.00	0.00	0.00	ND	
576.2	572.8	579.6	0.00	0.00	0.00	ND	
Peaks close to the normal range of tracer dyes:							

Ozark Underground Laboratory

Peaks wit	hin the no	rmal range	of tracer d	yes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.0	514.0	518.1	0.00	0.00	0.00	ND
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dyes:		
519.6	485.0	542.4	1.12	39.75	0.03	0.845

 Peak nm
 Left X
 Right X
 Height
 Area
 H/A
 Con

 516.0
 514.0
 518.1
 0.00
 0.00
 ND

 541.0
 538.1
 543.9
 0.00
 0.00
 ND

 568.7
 565.4
 572.0
 0.00
 0.00
 ND

 576.2
 572.8
 579.6
 0.00
 0.00
 ND

 Peaks close to the normal range of tracer dyes:

I Cak IIIII	LUITA	Kight A	neight	Alca	11/A	COIR
516.0	514.0	518.1	0.00	0.00	0.00	ND
540.4	486.8	545.5	3.12	97.38	0.03	2.80
540.4 569.5 576.2	545.5	45.5 596.8	18.96	446.16 0.04	47.3	
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dyes:		

				J =					
Peak nm	Left X	Right X	Height	Area	H/A	Conc			
515.4	482.5	541.6	5.57	137.75	0.04	2.94			
541.0	538.1	543.9	0.00	0.00	0.00	ND			
568.5	541.7	593.2	8.97	201.74	0.04	21.0			
576.2	572.8	579.6	0.00	0.00	0.00	ND			
Peaks close	Peaks close to the normal range of tracer dyes:								

Ozark Underground Laboratory 6 -515.3 5 Fluarescence magnitude 4 3 2 멅 1 Ð 460 4BO sba 5ża 540 580 58D БÓD 62D Wavelength(nm) on RF-5301PC Station 111: River Ranch Well OUL number: P3728 Analyzed: 09/26/05 Matrix: Elutant Collected: 09/15/05 1559 Placed: 09/09/05 1500

Peaks wi	thin the no	Diaht V	of tracer of	lyes:	TT/A	Cono
Реак пт	Lett	Right A	neight	Area	Π/A	Conc.
515.3	488.6	539.8	4.05	87.89	0.05	1.88
541.0	538.1	543.9	0.00	0.00	0.00	ND
570.1	548.6	590.8	3.68	76.56	0.05	7.98
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks ch	ose to the r	ormal rang	e of tracer	dves.		

Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.1	484.6	547.7	5.17	164.01	0.03	3.51
540.9	538.1	543.9	0.00	0.00	0.00	ND
568.8	547.7	594.4	4.49	113.71	0.04	11.2
576.1	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dves:		

0.04

0.000

546.1

586.6

0.67

Ozark Underground Laboratory

I Cures with	min the ne	innai range	or tracer e	yes.		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.0	514.0	518.1	0.00	0.00	0.00	ND
540.9	538.1	543.9	0.00	0.00	0.00	ND
568.6	565.4	572.0	0.00	0.00	0.00	ND
576.1	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dyes:		
508.4	486.4	530.8	0.96	26.62	0.04	0.570

Ozark Underground Laboratory

Ozark Underground Laboratory

516.0	514.0	518.1	0.00	0.00	0.00	ND
540.9	538.1	543.9	0.00	0.00	0.00	ND
568.6	565.4	572.0	0.00	0.00	0.00	ND
576.1	572.8	579.6	0.00	0.00	0.00	ND
Peaks cl	lose to the	normal ran	ge of trace	er dyes:		
510.6	483.6	532.6	0.82	23 53	0.03	0 504

Ozark Underground Laboratory

Peaks within the normal range of tracer dyes:									
Peak nm	Left X	Right X	Height	Area	H/A	Conc.			
516.0	514.0	518.1	0.00	0.00	0.00	ND			
541.0	538.1	543.9	0.00	0.00	0.00	ND			
568.7	565.4	572.0	0.00	0.00	0.00	ND			
576.2	572.8	579.6	0.00	0.00	0.00	ND			
Peaks clo	se to the r	ormal rang	e of tracer	dves:					

Ozark Underground Laboratory

Peaks close to the normal range of tracer dyes:

Ozark Underground Laboratory

Peaks close to the normal range of tracer dyes:

I cuit min	Derer	10,5.00.11	11015	·····		cone.		
516.0	514.0	518.1	0.00	0.00	0.00	ND		
541.0	538.1	543.9	0.00	0.00	0.00	ND		
568.7	565.4	572.0	0.00	0.00	0.00	ND		
576.2	572.8	579.6	0.00	0.00	0.00	ND		
Peaks close to the normal range of tracer dyes:								
511.8	485.8	539.0	0.61	18.83	0.03	0.398		

7 3 AMARAN 6 Fluanscence magnitude Б 4 3 2 Ð 460 4BO sba 520 540 580 58D БÓD 62D Wavelength(nm) on RF-5301PC Station 121: Copeland Well OUL number: P3733 Analyzed: 09/26/05 Matrix: Elutant Placed: 09/09/05 1648 Collected: 09/16/05 1503 Peaks within the normal range of tracer dyes: TT / A Co

Ozark Underground Laboratory

Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.0	514.0	518.1	0.00	0.00	0.00	ND
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dves:		

Z Z MAN 4 Fluarescence magnitude 3

	2-		1	× Eg		Ŗ	7		
	1-		لمم		مىلىرىكى مىلىرىكى	مم م			
	of v	\sim		_	_	_			
	460	4-BO	5DO Wavelen	520 lgth(nm)	540 on RF-530	580 01PC	58D	бар	620
Sta	tion 121:	Copeland	l Well						
ou	L numbe	r: P3915			A	Analyzed	10/11/05	;	
Ma	trix: Eluta	ant							
Pla	ced: 09/10	6/05 150	3		C	Collected:	09/23/05	1635	
D	1		1		1				

Peaks wit	hin the no	rmal range	of tracer d	lyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.0	514.0	518.1	0.00	0.00	0.00	ND
540.9	538.1	543.9	0.00	0.00	0.00	ND
568.6	565.4	572.0	0.00	0.00	0.00	ND
576.1	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dyes:		
510.2	485.2	538.0	0.94	31.32	0.03	0.670

Ozark Underground Laboratory

5

Peaks wit	hin the noi	rmal range	of tracer d	yes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
516.8	483.0	548.5	2.11	87.44	0.02	1.78
541.0	538.1	543.9	0.00	0.00	0.00	ND
568.7	565.4	572.0	0.00	0.00	0.00	ND
576.2	572.8	579.6	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dyes:		
564.6	548.5	581.2	0.66	23.91	0.03	2.27

Ozark Underground Laboratory

3.5 , FRANN M 3 Fluarescence magnitude Z.5 Z 1.5 .E Ð 460 4BO sba 5Ż0 540 580 58D БÓD 6ŻD Wavelength(nm) on RF-5301PC Station 122: Tropic Traditions Well OUL number: P3015 Analyzed: 08/24/05 Matrix: Elutant Placed: 08/08/05 1458 Collected: 08/13/05 1728 Peaks within the normal range of tracer dyes: Peak nm Left X H/A Conc. Right X Height Area 514.7 484.8 544.8 1.46 49.57 0.03 1.03 541.0 538.1 543.9 0.00 0.00 0.00 ND

568.7

576.2

565.4

572.8

572.0

579.6

Peaks close to the normal range of tracer dyes:

0.00

0.00

0.00

0.00

0.00

0.00

Ozark Underground Laboratory

Ozark Underground Laboratory

ND

ND

576.2

572.8

579.6

Peaks close to the normal range of tracer dyes:

0.00

0.00

0.00

ND

Peaks within the normal range of tracer dyes:									
Peak nm	Left X	Right X	Height	Area	H/A	Conc.			
515.8	484.0	544.8	1.39	45.45	0.03	0.970			
541.0	538.1	543.9	0.00	0.00	0.00	ND			
571.0	562.0	582.6	0.75	8.49	0.09	0.885			
576.2	572.8	579.6	0.00	0.00	0.00	ND			
Peaks close to the normal range of tracer dyes:									

APPENDIX IIC

ANALYTICAL GRAPHS OF ANALYZED WATER SAMPLES

Dye Trace: Mill Creek/Lee Sinks, July-December, 2005; Appendix IIC

reaks wit	min the no	rinai range	or tracer u	iyes.		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
575.3	572.7	578.0	0.00	0.00	0.00	ND
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dyes:		

Ozark Underground Laboratory

OUL number: P3532 Matrix: Water Collected: 08/06/05 1227

Peaks wit	hin the no	rmal range	of tracer d	yes:					
Peak nm	Left X	Right X	Height	Area	H/A	Conc.			
509.8	508.0	511.7	0.00	0.00	0.00	ND			
535.6	533.4	537.9	0.00	0.00	0.00	ND			
575.3	572.7	578.0	0.00	0.00	0.00	ND			
581.9	580.1	583.7	0.00	0.00	0.00	ND			
Peaks close to the normal range of tracer dyes:									

Peaks wit	nin the no	rmai range	or tracer d	iyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Con
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
575.3	572.7	578.0	0.00	0.00	0.00	ND
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dves:		

Ozark Underground Laboratory

Peaks wit	hin the no	rmal range	of tracer d	lyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
575.3	572.7	578.0	0.00	0.00	0.00	ND
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks close	se to the n	ormal rang	e of tracer	dyes:		

OUL number: P3535 Matrix: Water Collected: 08/09/05 1248

Peaks wit	hin the no	rmal range	of tracer d	lyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
575.3	572.7	578.0	0.00	0.00	0.00	ND
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dves:		

Ozark Underground Laboratory

Analyzed: 09/14/05

Station 4: Hornsby Spring Daily OUL number: P3536 Matrix: Water Collected: 08/10/05 1228

Peaks wit	hin the no	rmal range	of tracer d	yes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
576.8	563.0	585.4	0.66	10.96	0.06	0.093
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks close	se to the n	ormal rang	e of tracer	dyes:		

OUL number: P3569 Matrix: Water Collected: 08/12/05 1509

Peaks wit	hin the no	rmal range	of tracer d	lyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
574.6	558.2	588.8	1.34	23.51	0.06	0.198
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dves:		

OUL number: P3537 Matrix: Water Collected: 08/13/05 1535

ND		1 ii cu	neigni	Right X	Left X	Peak nm
ND	0.00	0.00	0.00	511.7	508.0	509.8
ND	0.00	0.00	0.00	537.9	533.4	535.6
0.24	0.05	29.23	1.53	591.2	554.0	575.8
ND	0.00	0.00	0.00	583.7	580.1	581.9
	0.00	0.00 dves:	0.00 e of tracer	583.7	580.1	581.9 Peaks close

Ozark Underground Laboratory

OUL number: P3666 Matrix: Water Collected: 08/19/05 1408

Peaks wit	hin the no	rmal range	of tracer d	yes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
577.2	559.6	590.0	1.36	23.59	0.06	0.199
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks close	se to the n	ormal rang	e of tracer	dyes:		

576.8

581.9

552.2

580.1

585.4

583.7

Peaks close to the normal range of tracer dyes:

0.88

0.00

15.20

0.00

0.06

0.00

	7-							Ų
	6-						,	∿&&/ ^{/(}
ttde	5-						f	V Y
uliou	4-					H L	ຼ / ໂສເ	
8	3-					_^~		
	z					\$/		
ш	1-		Ę	2	ع سر الج			
	0	~~~~		-	_		-	
	460	1 4BC	500 Wavelen	520 gth(nm) or	540 n RF-5301	580 5 PC	ád Bád	82D
Stat	tion 4:	Hornsby	Spring Dail	у				
OU	L num	iber: P36	68		An	alyzed: 09/	21/05	
Ma	trix: W	ater	1 5 0 5					
Col	lected:	08/26/05	5 1507					
Pea	ks wit	hin the n	ormal range	of tracer of	dyes:			
Pea	k nm	Left X	Right X	Height	Area	H/A	Conc.	
509	.8	508.0	511.7	0.00	0.00	0.00	ND	
535	.6	533.4	537.9	0.00	0.00	0.00	ND	
577	.8	551.0	590.2	0.65	19.54	0.03	0.165	

Ozark Underground Laboratory

0.128

581.9

580.1

583.7

Peaks close to the normal range of tracer dyes:

0.00

0.00

0.00

ND

ND

Ozark Underground Laboratory

Matrix: Water Collected: 08/29/05 1555

Peaks wit	hin the no	rmal range	of tracer d	lyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
575.3	572.7	578.0	0.00	0.00	0.00	ND
581.9	580.1	583.7	0.00	0.00	0.00	ND

Peaks close to the normal range of tracer dyes:

Ozark Underground Laboratory

Analyzed: 10/10/05

Station 4: Hornsby Spring Daily OUL number: P3883 Matrix: Water Collected: 09/02/05 1415

Peaks within the normal range of tracer dyes:

Peak nm	Left X	Right X	Height	Area	H/A	Conc.
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
575.3	572.7	578.0	0.00	0.00	0.00	ND
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks clo	se to the n	normal rang	e of tracer	dyes:		

Ģ 5 Fluarescence magnitude 4 3 2 g Ð 520 560 БÓD 460 4BO sba 540 58D 62D Wavelength(nm) on RF-5301PC Station 4: Hornsby Spring Daily OUL number: P3885 Analyzed: 10/11/05 Matrix: Water Collected: 09/09/05 1437 Peaks within the normal range of tracer dyes: Peak nm Left X Right X Height H/A Conc. Area D D

Ozark Underground Laboratory

509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
575.3	572.7	578.0	0.00	0.00	0.00	ND
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks cl	lose to the	normal ran	ge of trace	er dyes:		

Matrix: Water Collected: 07/29/05 1722

conceiteu.	01122/05	1/22	

Peak nm	Left X	Right X	Height	Area	H/A	Conc.
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
574.1	528.8	615.4	56.17	1,353.33	0.04	11.3
581.9	580.1	583.7	0.00	0.00	0.00	ND

OUL number: P2814 Matrix: Water Collected: 07/31/05 1800

Peaks wit	hin the no	rmal range	of tracer d	yes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
574.1	535.2	615.2	25.15	617.38	0.04	5.16
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks close	se to the n	ormal rang	e of tracer	dyes:		

Peaks wit	hin the no	rmal range	of tracer d	lyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
574.5	546.6	596.2	12.06	276.66	0.04	2.33
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks clo	se to the n	ormal rang	e of tracer	dyes:		
608.0	596.2	617.6	2.36	45.24	0.05	0.000

OUL number: P3019 Matrix: Water Collected: 08/11/05 1653

Peaks wit	hin the no	rmal range	of tracer d	yes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
574.7	546.4	595.0	10.30	216.42	0.05	1.84
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks close	se to the n	ormal rang	e of tracer	dyes:		

581.9 580.1 583.7 0.00 0.00 Peaks close to the normal range of tracer dyes:

OUL number: P3553 Analyzed: 09/14/05 Matrix: Water Collected: 09/02/05 1730

Peaks within the normal range of tracer dyes:

Peak nm	Left X	Right X	Height	Area	H/A	Conc.
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
575.3	543.4	604.2	18.57	430.81	0.04	3.64
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dyes:		

Analyzed: 09/26/05

Station 43: Mill Creek Sink Cave OUL number: P3742 Matrix: Water Collected: 09/09/05 1736

Peak nm	Left X	Right X	Height	Area	H/A	Conc.
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
575.2	553.0	593.2	8.65	172.74	0.05	1.46
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dyes:		

OUL number: P3739 Analyzed: 09/26/05 Matrix: Water Collected: 08/19/05 1710

Peak nm	Left X	Right X	Height	Area	H/A	Conc.
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
575.3	572.7	578.0	0.00	0.00	0.00	ND
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dyes:		

Ozark Underground Laboratory

 Station 106T: Santa Fe Hills Subdivision Well - System Tap Water

 OUL number: P3741
 Analyzed: 09/26/05

 Matrix: Water
 Collected: 09/21/05 1339

Peak nm	Left X	Right X	Height	Area	H/A	Conc.
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
575.3	572.7	578.0	0.00	0.00	0.00	ND
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks clo	se to the r	normal rang	e of tracer	dyes:		

Collected: 08/07/05 1623

Peaks wit	hin the no	rmal range	of tracer d	lyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
575.3	572.7	578.0	0.00	0.00	0.00	ND
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dves:		

Ozark Underground Laboratory

Analyzed: 09/26/05

Station 111: River Ranch Well OUL number: P3738 Matrix: Water Collected: 08/10/05 1255

6

Peaks wit	hin the no	rmal range	of tracer d	lyes:		
Peak nm	Left X	Right X	Height	Area	H/A	Conc.
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
576.8	558.6	587.8	1.29	23.85	0.05	0.201
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks clo	se to the r	ormal rang	e of tracer	dves:		

Peaks close to the normal range of tracer dyes:

Ozark Underground Laboratory

Right X Height 511.7 509.8 508.0 0.00 0.00 0.00 ND 535.6 533.4 537.9 0.00 0.00 0.00 ND 575.3 572.7 578.0 0.00 0.00 0.00 ND 581.9 580.1 583.7 0.00 0.00 0.00 ND Peaks close to the normal range of tracer dyes:

OUL number: P3888 Analyzed: 10/11/05 Matrix: Water Collected: 09/09/05 1500

reaks within the normal range of tracer dyes:							
Peak nm	Left X	Right X	Height	Area	H/A	Conc.	
509.8	508.0	511.7	0.00	0.00	0.00	ND	
535.6	533.4	537.9	0.00	0.00	0.00	ND	
575.3	572.7	578.0	0.00	0.00	0.00	ND	
581.9	580.1	583.7	0.00	0.00	0.00	ND	
Peaks close	se to the n	ormal rang	e of tracer	dyes:			

Ozark Underground Laboratory

 Station 111T: River Ranch Well Water System

 OUL number: P3926
 Analyzed: 10/11/05

 Matrix: Water
 Collected: 09/30/05 1507

Peak nm	Left X	Right X	Height	Area	H/A	Conc
509.8	508.0	511.7	0.00	0.00	0.00	ND
535.6	533.4	537.9	0.00	0.00	0.00	ND
575.3	572.7	578.0	0.00	0.00	0.00	ND
581.9	580.1	583.7	0.00	0.00	0.00	ND
Peaks close to the normal range of tracer dyes:						

APPENDIX III

MISCELLANEOUS DOCUMENTS

SRWMD Discharge Msmt. Notes; Hornsby Spring, August 24, 2005.
SRWMD Discharge Msmt. Notes; Hornsby Spring, October 11, 2005.
KES Discharge Measurement; Cellon Creek, July 1, 2005.
KES Discharge Measurement; Cellon Creek, July 27, 2005.
KES Discharge Measurement; Cellon Creek, October 5, 2005.
Alachua County Public Works Dept.; letter with staff gauge elevation data.
Alachua County Environmental Protection Department file document (2 pages); unpublished report referencing 1976 dye trace by D.W. Fisk and I.S. Exley.

	1 69	P.	
Dec. 1979		織(中)	Men. No. 646
11	the second	RIVER	Comp. by
~ 0	DISCHARGE MEA	SUREMENT NOTES	Checked by
HORD	1001	2	
Horns	by Spring (Camp Kul	iana
00 1to 8.24	2005 Party	BELET	-1
5 ideh 67 A	1 240 Vel 0"	19 G.H 1	Diach. 190
9 sthed 12 W	o, secs, G. H.	change in	hrs. Susp. R. A.
Method coef	Hor. angle coef	Susp. coef N	leter No.
GAGE	READINGS	Type of meter TY166	7 Ffr 13 5T 6
Time 19.9 Re	konder Inside Outside	Date rated	for rod, other.
1047 0.81		Meter	above bottom of weight.
104/ 0/81		Spin before meas.	K after OK
		Meas_plots % diff.	from rating
		Wading bable ice foat	Junstr. downstr. side
		hridan == 120	Best mile shows Kalaw
		we we	Lees mile above, peron
		gage, and	
		Check-bar, found	
Weighted M. G. H		changed to	
G. H. currection		Correct	
Sect M. C. H		Levels obtained	
- isurement rated exer 29 onditions: Cross are 98 er 00 er 00 beerver	ition	Weather Air Wather Air Wa	•F@ terºF@
¥ 501	TK5 1	1-101- 6-12 l	N
8	1217		
= xark.	1.10W	uran 65	120
5000			
L of zero flow		It.	SW- 300 4
PR.			

Des torn			
Dec. 1979		in in in in its in the international in the international	Non No 047
	U V	RIVER	Camp. by
4	DISCHARGE N	EASHREMENT NOTES	a 1 1
a . No. HOR	201001	A POLICIAL MOIES	Checked by
Hornsb	y Springs (a	Comp Lular	100
00 to 10 - 1/~	2005 00 0	BATET	<u>17</u>
5 deb 72.0'	Am 2.24 4	1.67.	160
9 that 12.6	Break Martin Velle	2:30.7 G. H D	Nuch
Method soal	-140. 8608 G.	H. change in	hrs. Susp. Kod
GA	CE PEADINCE	Susp. coef. M	ter No.
Time	Recorder Inside Outsid	Type of meter VELCE	H# 11 512
11290.98		- Date rated	for rod, other.
1341 0.98		Meter	bove bottom of weight.
		Spin before meas. Of	Samafter OK
		Meas. plots % diff. fr	om fating
		Wading, cable, ice, boat	upsit., downstr., side
		bridge = 110 (et mile above balan
		- Bare, and Vent	, and above, conv
		Check-bar, found	
Weighted M C L		changed to	
Correction		Cetterl	44
GIM.C.H.		Lavala abanimud	
	eventions (201)	1 Levels obtained	
I irement rated	The second se	all (247) noor louise 807	hased on following
- Jrement rated a	eaction (2%), good (5%)	, (p /0), poor (over 8 /0)	and on tonowing
- 798 - ditions: Cross :	section	, san (p. 70), poor (over 8 70)	Bener on Indowing
- 7 premient rated a 980 - 980 - 980	section		- Desire on Tobowing
- 2 premient rated a 98-98: Cross :	section	Weather Air	°F@
- 292-ditions: Cross :	section		•F@
1-292-ditions: Cross : 982-000000000000000000000000000000000000	section		•F@
- 792-ditions: Cross : 982 OWMUS	section	Weather Air Air	•F@
1-798-988 OWMANS Cross Deriver	section	Weather Air	•F@
1-292-ditions: Cross 00000000000000000000000000000000000	section	Weather Air	•F@
1-292-ditions: Cross 000 - 00	section		•F@ •F@ ushed Ľ
1-792-986 OWMAN Strongs: Cross baterver Weiling: Cross baterver	Record removed	Weather	•F@
-798 Cross -798 Cross -798 Cross -798 Cross -798 Cross -798 Cross -798 Cross -798 Cross -798 Cross -798 Cross -988 C	Record removed	Weather Air Weather Air Water Intake flucture Water Jidth 63	•F@
-792-98E OWMUS Cross buerver W1 0002:11 a 11000	Record removed	Weather	•F@
- 7 premient rated (- 798 ditions: Cross - 988 OWMUS bierver WHO - 11 co - 11	Record removed	Weather	•F@
Verver WW1 0007 1 1 a Tron 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Record removed	Weather	•F@

	KARST ENVIRONMENTAL SERVICES, INC.							
	DISCHARG	CHARGE MEASUREMENT						
	Location:	ocation: Cellon Creek S			sco State Pr	eserve		
	CFS:	2.45	Ì			Date:	7/1/2005	
	MGD:	1.58				Time Start:	12:53	
	GPM:	1099				Time End:	13:15	
	Total Width	1:	11.7	Feet		Side Start:	REW	
	Total Area:		2.94	Square Fe	et	Personnel:	PLB.ML	
			0.83	Ft./Sec.	 	Access:	Wading	
	No. of Secs		0.00					
	Method:		0.6					
	Instrument	:	Marsh I	Mcbirnev F	lo-Mate Mo	del 2000		
		-	Electro	nic flowme	ter			
	Lee Sink Sta	ff Gauge:	Time:	13:25	Reading:	2.02	FSL.NGVD:	63.28
Station #	DIP	Station Width	Depth	OD	PV	Mean PV	Area	Discharge
0	0							
1	0.5	0.75	0.3	0.6		0.78	0.225	0.1755
2	1	0.5	0.35	0.6		0.96	0.175	0.168
3	1.5	0.375	0.35	0.6		1.18	0.13125	0.154875
4	1.75	0.25	0.35	0.6		1.19	0.0875	0.104125
5	2	0.25	0.35	0.6		1.17	0.0875	0.102375
6	2.25	0.25	0.35	0.6		1.19	0.0875	0.104125
7	2.5	0.375	0.35	0.6		1.09	0.13125	0.1430625
8	3	0.5	0.3	0.6		0.95	0.15	0.1425
9	3.5	0.5	0.3	0.6		0.83	0.15	0.1245
10	4	0.5	0.3	0.6		0.84	0.15	0.126
11	4.5	0.5	0.3	0.6		0.86	0.15	0.129
12	5	0.5	0.35	0.6		0.97	0.175	0.16975
13	5.5	0.5	0.3	0.6		0.82	0.15	0.123
14	6	0.5	0.25	0.6		0.7	0.125	0.0875
15	6.5	0.5	0.25	0.6		0.75	0.125	0.09375
16	7	0.5	0.2	0.6		0.65	0.1	0.065
17	7.5	0.5	0.2	0.6		0.62	0.1	0.062
18	8	0.5	0.2	0.6		0.58	0.1	0.058
19	8.5	0.5	0.15	0.6		0.61	0.075	0.04575
20	9	0.5	0.2	0.6		0.56	0.1	0.056
21	9.5	0.5	0.15	0.6		0.62	0.075	0.0465
22	10	0.5	0.15	0.6		0.58	0.075	0.0435
23	10.5	1.45	0.15	0.6		0.57	0.2175	0.123975
	11.7	END						
								[
	Stream Cros	ss-section lo	ocated at:					
	N 29° 46.27	'5'						[
	W 82° 27.94							

	KARST ENVIRONMENTAL SERVICES, INC.							
	DISCHARGE MEASUREMENT							
	Location:	Creek	San Felasco State Preserve					
	CFS:	0.11				Date:	7/27/2005	
	MGD:	0.07				Time Start:	13:50	
	GPM: 47					Time End:	16:03	
	Total Width:		2.8	Feet		Side Start:	REW	
	Total Area:		0.59	Square Fe	eet	Personnel:	PLB,TLM	
	Avg. Veloci	ity:	0.16	Ft./Sec.		Access:	Wading	
	No. of Secs.:		10					
	Method:		0.6					
	Instrument	Marsh I	Mcbirney F	Io-Mate Mod	del 2000			
			Electro	nic flowme	eter			
	Lee Sink Sta	ff Gauge:	Time:	14:30	Reading:	3.11	FSL,NGVD:	64.37
Station #	DIP	Station Width	Depth	OD	PV	Mean PV	Area	Discharge
0	0							
1	0.25	0.2	5 0.1	0.6		0	0.025	0
2	0.5	0.2	5 0.2	0.6		0.01	0.05	0.0005
3	0.75	0.2	5 0.2	0.6		0.09	0.05	0.0045
4	1	0.2	5 0.25	0.6		0.18	0.0625	0.01125
5	1.25	0.2	5 0.25	0.6		0.19	0.0625	0.011875
6	1.5	0.2	5 0.275	0.6		0.22	0.06875	0.015125
7	1.75	0.2	5 0.3	0.6		0.23	0.075	0.01725
8	2	0.2	5 0.3	0.6		0.24	0.075	0.018
9	2.25	0.2	5 0.3	0.6		0.26	0.075	0.0195
10	2.5	0.2	5 0.2	0.6		0.14	0.05	0.007
	2.8	END						
	Stream Cros	ss-sectior	n located at					
	N 29° 46.275'							
	W 82° 27.945'							

	KARST ENVIRONMENTAL SERVICES, INC.							
	DISCHARG	HARGE MEASUREMENT						
	Location: Cellon C		eek	San Felasco State Pr		eserve		
	CFS:	0.39				Date:	10/5/2005	
	MGD:	0.25				Time Start:	15:41	
	GPM:	177				Time End:	15:57	
Total Width:		3.9	Feet		Side Start:	REW		
	Total Area:		0.97	Square Fe	et	Personnel:	PLB	
	Avg. Veloci	ity:	0.34	Ft./Sec.		Access:	Wading	
	No. of Secs.:		15					
	Method:		0.6					
	Instrument	:	Marsh I	Mcbirney Fl	o-Mate Mod	lel 2000	•	
			Electro	nic flowmet	er			
	Lee Sink Sta	ff Gauge:	Time:	15:00	Reading:	0.25	FSL,NGVD:	61.51
Station #	DIP	Station	Depth	OD	PV	Mean PV	Area	Discharge
	0	Width						
0	0.25	0.275	0	0		0	0	0
1	0.25	0.375	0	0		0.04	0.05	0 002
2	0.5	0.25	0.2	0.0		0.04	0.03	0.002
3	0.75	0.25	0.2	0.6		0.12	0.05	0.006
4	1.05	0.25	0.25	0.6		0.3	0.0625	0.01875
5	1.20	0.25	0.25	0.6		0.52	0.0625	0.0325
0	1.0	0.25	0.3	0.6		0.59	0.075	0.04425
/	1.75	0.25	0.35	0.6		0.54	0.0075	0.04725
0	2	0.25	0.35	0.6		0.55	0.0675	0.046125
9	2.25	0.25	0.35	0.0		0.0	0.0075	0.0525
10	2.3	0.25	0.35	0.0		0.39	0.0073	0.031025
11	2.75	0.25	0.35	0.6		0.43	0.0675	0.037625
12	ى 2.05	0.25	0.3	0.6		0.3	0.075	0.0225
13	3.23	0.25	0.25	0.6		0.27	0.0625	0.010675
14	3.5	0.25	0.2	0.6		0.23	0.05	0.0115
15	3.75		0.15	0.0		0.07	0.04125	0.0028875
	3.9							
	C	tream Cros	e-section	located at:				
	0 N 20º 16 27	5'	5-560100	iocaleu al.				
	W/ 82º 27 0/	15'						
	VV 02 21.94	+J				1		

ALACHUA COUNTY PUBLIC WORKS DEPARTMENT TRANSPORTATION & DEVELOPMENT DIVISION

P.O. Box 1188 • Gainesville, Florida 32602-1188 Tel: (352) 374-5245 • Fax: (352) 337-6243 Suncom / Tel: 651-5245 • Fax: 651-6243 E-Mail: pubwork@alachua.fl.us Home Page: www.co.alachua.fl.us

September 20, 2005

Senior Environmental Specialist

201 SE 2nd Ave. Suite 201

Gainesville, Fl. 32601

Jim Myles

Dear Jim,

Michael J. Fay Acting Director Public Works Assistant Public Works Director of Transportation & Development EJMail mlay@co.alachaatios

Lalit Laiwani, P.E. Civil Engineer II Development Review E-Mai: Llaiwani@co.alachua.ll.us

Jim King Construction Inspections Superintendent E-Mail. (king@co.alachua.ft.us

William Lecher, P.E. Design/Contract Manager E-Mail wiecher@co.alachua.lt.us

John Sabatella, AICP Senior Planner E-Mail: jsabatel@co.alachua.ll.us

Robert Wigglesworth, P.L.S. Real Property Coordinator E-Mait: rwggles@co.alachua II um The elevations at the 3 sites requested are as follows:

Alachua County Environmental Protection Department

Subject: Requested Elevation Information

1) Olson Well:

Top of 4" well casing = 143.94

2) Lee Sink:

Elevation at "6.60" at top of staff gauge = 67.86

Top of set concrete monument which bears N 80° W, 119.02' from staff gauge = 67.92

3) Mill Creek Sink:

Elevation at "6.60" at top of staff gauge = 43.28

Top of set concrete monument which bears East, 27.61' from staff gauge = 42.68

RECEIVED ADACADA COURTY ENVIRONMENTAL

Note: All elevations are based on NGVD 1929 Datum.

An Equal Opportunity Employer M.F.V.D.

SEP 21 2005

PROTECTION DEPARTMENT Stephen J. Emmons, P.L.S. Senior Survey Technician Public Works Department

œ

File - ground wollor

The attached time schedule for a proposed rhodamine WT dye tracer project in western Alachua County is based on conclusions drawn after an independent tracer study from Alachua Sink (west) to Hornesby Springs on February 6-10, 1976. This test was conducted independently of SRWMD by D. W. Fisk and I. S. Exley for the sole purpose of determining. if a hydrologic connection of Alachua Sink and Hornesby Springs exists. The data collected from that study are listed below.

Distance from Alachua Sink to Hornesby Springs - approx. 6 mi. Estimated velocity of water - 0.5 ft/sec. Dye released at - rhodamine WT 6:05 PM 2/8/76 - flourescien 7:50 PM 2/8/76

Results of Sampling

11.1

ŧ

Rhodamine .		Time of Sample	Elapsed Time from Release	ppm	
	2/9/76	1:30 PM	19.5 hrs.	0.0	
		5:30 PM	23.5 hrs.	.17	
1	2/10/76	8:00 AM	38 hrs.	0.0	
Flouresien	2/9/76	1:30 PM	17.3 hrs.	0.0	
		5:30 PM	21.3 hrs.	.42	
	2/10/76	8:00 AM	36.3 hrs.	.32	
		1:00 PM	41.3 hrs.	0.0	

From this data, an assumed minimum time of travel of 20 hours is made for dye traveling from Alachua Sink to Hornesby Springs. The flouresien dye was released in a surface stream which connects to the Alahcua-Hornesby System via the Mill Creek Ponor at a point between the sink and the spring, about 100 yards downstream from the sink. From an assumed travel time of 20 hours and distrance of 6 miles, a maximum velocity of .3 mph was obtained.

PROPOSED TIME SCHEDULING FOR DYE TRACING STUDY OF WESTERN ALACHUA COUNTY, FLORIDA Monday, March 2 Begin collection daily background samples at Hornesby Springs (continue through Saturday, March 7) Friday, March 6 All Dunn Bug filters and sampling equipment in place. Key to Sanches Prairie gates secured from DNR. PM Saturday, March 7 4:00 PM Release 10 pounds of rhodamine WT at Split Rock Sink and 10 pounds of rhodamine WT at Alachua Sink simultaneously Begin collection of 1 hour samples from 12:00 PM Alachua Sink (end sampling at 6:00 PM. March 8) Sunday, March 8 Minimum expected time for dye released from Split Rock Sink to reach Alachua Sink (maximum hour estimated at 10:00 AM, 5:30 AM March 8) Begin collection of 30 minute samples from Hornesby Springs (end sampling 8:00 AM -12:00 noon, March 9) Minimum expected time for dye released from Alachua Sink to reach Hornesby Spring 12:00 noon (maximum hour estimated at 4:00 PM, March 8) Monday, March 9 Minimum expected time for dye released from Split Rock Sink to reach Hornesby Spring via Alachua Sink (maximum hour 1:30 AM estimated at 10:00 AM, March 9) End all sampling 4:00 PM Collect all filters Disassemble all sampling equipment