MEMORANDUM

UF Health Florida Recovery Center at Springhill 21-0340

RE:	UF Health Florida Recovery Center at Springhill - Fire Flow Calculations
Date:	September 3, 2023
From:	Randall Scott Olney, P.E.
To:	Alachua County, GRU

The following is a calculation for required fire flow for the proposed project based on the NFPA 1: Fire Code.

Building data is based on the information available from the project architect at the time of this memo. Any changes to the building data will void the provided fire flow calculation and require a revised analysis to verify the building complies with the applicable fire protection criteria. Buildings 1 and 2 (Apartment Buildings) <u>will be</u> protected by an approved automatic fire sprinkler system. Building 3 (Amenities Building) <u>will not be</u> protected by an approved automatic fire system.

NFPA 1 Calculations:

Building 1:	Apartment Building
Construction Type:	V (000)
Fire Flow Area:	± 30,000 SF

Required Fire Flow per NFPA Table 18.4.5.1.2: 4,750 gpm

Per NFPA 1, 18.4.5.3.2, a reduction in required fire flow of 75% shall be permitted when the building is protected throughout by an approved automatic sprinkler system. The resulting fire flow shall not be less than 1,000 gpm.

Required Fire Flow with automatic sprinkler system reduction: 4,750 * 0.25 = 1,188 gpm

Per GRU Standards Section V.G.4, a minimum hydraulic capacity of 1,500 gpm at 20 psig is required.

Building 2:	Apartment Building
Construction Type:	V (000)
Fire Flow Area:	± 12,000 SF

Required Fire Flow per NFPA Table 18.4.5.1.2: 3,000 gpm

Per NFPA 1, 18.4.5.3.2, a reduction in required fire flow of 75% shall be permitted when the building is protected throughout by an approved automatic sprinkler system. The resulting fire flow shall not be less than 1,000 gpm.

Required Fire Flow with automatic sprinkler system reduction: 3,000 * 0.25 = 750 gpm = 1,000 gpm

Per GRU Standards Section V.G.4, a minimum hydraulic capacity of 1,500 gpm at 20 psig is required.

Building 3:	Amenities Building
Construction Type:	V (000)
Fire Flow Area:	± 4,175 SF

Required Fire Flow per NFPA Table 18.4.5.1.2: 1,750 gpm

Required Fire Flow per ISO NFF Worksheet: 1,750 gpm

Conclusion:

- Required NFPA fire flow: <u>1,750 gpm</u>
- Required ISO fire flow: <u>1,750 gpm</u>
- Required GRU fire flow: 1,500 gpm
- *Available fire flow per hydrant flow test conducted on 05/26/2016: 4,158 gpm
- The total available fire flow at 20 psi exceeds the fire flow requirement specified by GRU, ISO, and NFPA Table 18.4.5.1.2; therefore, the project site is in compliance with the NFPA 1: Fire Code, GRU, and ISO Standards.

* Updated fire flow data has been requested from GRU and will be provided upon receipt.

Randall Scott Olney, P.E. State of Florida, Professional Engineer, License No. 68382

Randall Scott Olney FL PE #68382

This item has been digitally signed and sealed by Randall Scott Olney, P.E. on the date indicated here. 9/4/2023

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

	Diese Ellerer en ent						
I(443), I(332), II(299)*	I(443), I(332), II(222)* II(111), III(211)*		II(000), III(200)*	V(000)*	Fire Flow gpm' (× 3.785 for L/min)	Flow Duration (hours)	
	0-12,700	0-8200	0-5900	0-3600	1500	-	
0-22,700	12,701-17,000	8201-10,900	5901-7900	3601-4800	1750	1	
22,701-30,200	17,001-21,800	10,901-12,900	7901-9800	4801-6200	2000	2	
30,201-38,700	21,801-24,200	12,901-17,400	9801-12,600	6201-7700	2250	4	
38,701-18,300	24,201-33,200	17,401-21,300	12,601-15,400	7701-9400	2500	-	
48,301-59,000	33,201-39,700	21,301-25,500	15,401-18,400	9401-11,300	2750	<u></u>	
59,001-70,900		25,501-30,100	18,401-21,800	11,301-13,400	3000		
70,901-83,700	39,701-47,100	30,101-35,200	21,801-25,900	13,401-15,600	3250	- 3	
83,701-97,700	47,101-54,900	35,201-40,600	25,901-29,300	15,601-18,000	3500		
97,701-112,700	54,901-63,400	40,601-46,400	29.301-33,500	18,001-20,600	3750		
112,701-128,700	63,401-72,400	46,401-52,500	33,501-37,900	20,601-23,300	4000		
128,701-145,900	72,401-82,100	<u>46,401-52,500</u> 52,501-59,100	37,901-42,700	23,301-26,300	4250		
145,901-164,200	82,101-92,400		42,701-47,700	26,301-29,300	4500		
164,201-183,400	92,401-103,100	59,101-66,000	47,701-53,000	29,301-32,600	4750		
183,401-203,700	103,101-114,600	66,001-73,300	53,001-58,600	32,601-36,000	5000		
203,701-225,200	114,601-126,700	73,301-81,100		36.001-39,600	5250	-1	
225,201-247,700	126,701-139,400	81,101-89,200	58,601-65,400	39,601-43,400	5500	-	
247,701-271,200	139,401-152,600	89,201-97,700	65,401-70,600	43,401-47,400	5750		
271,201-295,900	152,601-166,500	97,701-106.500	70,601-77,000		6000	-	
Greater than 295,900	Greater than 166,500	106,501-115,800	77,001-83,700	47,401-51,500	6250	- 4	
		115,801-125,500	83,701-90,600	51,501-55,700	6500		
		125,501-135,500	90,601-97,900	55,701-60,200	6750		
		135,501-145,800	97,901-106,800	60,201-64,800			
		145,801-156,700		64,801-69,600	7000		
		156,701-167,900	113,201-121,300	69,601-74,600	7250		
		167,901-179,400		74,601-79,800	7500		
		179,401-191,400	129,601-138,300	79,801-85,100	7750	-	
		Greater than 191,400	Greater than 138,300	Greater than 85,100	8000		

18.4.5.1.2 Minimum Required Fire Flow and Flow Duration for Buildings . .

ņ,

*Types of construction are based on NFPA 220. *Measured at 20 psi (139.9 kPa).

ISO Needed Fire Flow (NFF) Worksheet

(Page references are to the appropriate sections in the ISO Guide for Determination of Needed Fire Flow)

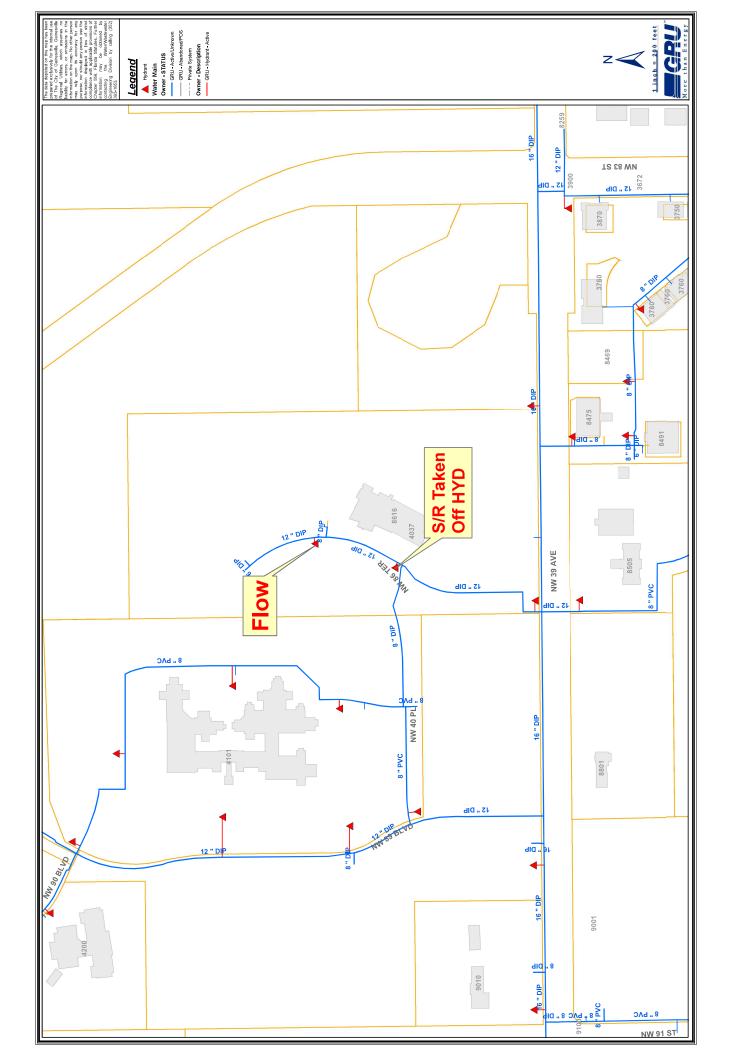
Petition N	umber:		Date:							
Project:	UF Reco	overy Center at Springhill	Engineer:		C. Menhennett, E.I.					
Ū	Offiice	Building - Worst Case	Checked I	By:	Randall S. Olney, P.E					
Location:	4	1305 NW 90 Blvd		-						
	Ga	inesville, FL 32606								
Subject Building										
Construct	Construction Class (p. 4): Wood Frame Construction v construction coefficient (F) (p. 2): 1.5									
Area of la	rgest floor in	the building (if modificat	tions are m	ade fo	<u>r d</u> ivision walls (p. 8), the					
division w	division walls must be shown on the site plan.): 4,175 sq.ft.									
Total area	of all other	floors (if modifications ar	e made for	divisio	on walls (p. 8), the division					
walls mus	t be shown o	on the site plan.):		sq. ft	i.					
Effective A	Area (A _i) (p.	9): 4,175	sq. ft.	(Show	calculations below)					
Noodod Fi	ro Flow ottr	ibuted to construction (Ci) (nor form	ulo (n	(2)): 1744.584	1478				
					and minimum values of C _i)	1470				
Type of O	· ·	~		-	upancy Factor (O _i) (p. 11):	0.85				
Type of O	ccupancy:	Limited-combustible (C-2)		Jocc	upancy ractor (O_i) (p. 11).	0.00				
		Expos	ures (p. 1	16)						
Front:	construction	n of facing wall of exposu		,		▼				
riont.		.) to the exposure building		<u>(p. 4)</u> . ▼I	Length of exposure wall:					
	•	stories of exposure wall:	s∙1	T	Length x number of stories:	0				
		otection in exposure wall:	·	1 #	Length x number of stories.	U				
		exposure (X _i) from Table		7).	0					
		exposure (A _i) from rable	550.A (p. 1	/)•	U					
Back:	construction	n of facing wall of exposur	e building	(p. 4):		•				
		.) to the exposure building			Length of exposure wall:					
	Number of	stories of exposure wall:	1	I	Length x number of stories:	0				
	Opening Pr	otection in exposure wall:				•				
	Factor for e	exposure (X _i) from Table 3	330.A (p. 17	7):	0					
Left:		n of facing wall of exposur	1 C	<u>(p. 4</u>):		▼				
		.) to the exposure building	11 - 30		Length of exposure wall:	45				
		stories of exposure wall:	1	I	Length x number of stories:	45				
		otection in exposure wall:				•				
	Factor for e	exposure (X _i) from Table 3	330.A (p. 17	7):	0.17					
Diaht	construction	n of fooing wall of ownoous	a huildina	(m. 1).		▼				
Right:		n of facing wall of exposur		(p. 4):						
		.) to the exposure building			Length of exposure wall:	40				
		stories of exposure wall:	1		Length x number of stories:	40				
		otection in exposure wall:				•				
	ractor for e	exposure (X _i) from Table 3	ээ . А (р. 17	(): 	0.12					

Communications (p. 18)

Passageway Opening Protection:								
Construction class of communication (Table 330.B) :								
Is communication open or enclosed?			-					
Length of communication (in feet):			•					
Factor for Communications (P _i) from 7		0						

Calculation of Needed Fire Flow (p. 1)

 $NFF=(C_i)(O_i)[1.0+(X+P)_i]$ (substitute values as determined above. For exposures and communications use the single side with the highest charge.)


NFF=	1750	х	0.85	х	[1	+	(0.17	+	0)
NFF=	1740.375	gpm										
NFF=	1750	gpm (ro	ounded to	nearest		250	gpm j	per IS	SO require	ements)	

Note: ISO evaluates hydrant distribution by examining the number and type of hydrants within 1,000 feet of each representative building. They also look at the distance from each such hydrant to the subject building, measured as apparatus can lay hose.

Hydrants with at least one large pumper outlet may receive credit for up to 1,000 gpm. Hydrants with at least two hose outlets, but no pumper outlet, may receive credit for up to 750 gpm. And hydrants with only one hose outlet may receive credit for up to 500 gpm.

Hydrants within 300 feet of the subject building may receive credit for up to 1,000 gpm (but not more than the credit that would apply based on the number and type of outlets). Hydrants from 301 feet to 600 feet from the subject building may receive credit for up to 670 gpm (but not more than the credit that would apply based on the number and type of outlets). And hydrants from 601 feet to 1,000 feet from the subject building receive credit for 250 gpm. Under certain circumstances, when all fire department pumpers carry sufficient largediameter hose, ISO may allow maximum credit for hydrants up to 1,000 feet from the subject building.

More than one fire hydrant may be required for proper distribution of water per ISO requirements.

FIRE HYDRANT FLOW TEST

NAME:	Springhill M	OB - Phase II							
ADDRESS:	8616 NW 86	6th Ter		м	AP NO:	3338			
								REC	NO
		·····						3762	
			511 <i>4</i> 7					HYD NO	
ΡΙΤΟΤ ΗΥΙ	ESIDUAL HYI D: (4.5'' NOZZ		NVV	86th Ter				30025	3338
#2	(2.5" NOZZ (2.5" NOZZ	ZLE) 8616	NW	86th ter				30499	3338
	1	IEST DATE:	05/26/2010	6	TEST TIN	//E: 3:39 pm			
NOZZL DIA (IN.)	E "C" FACTOR	NO OF NOZZLES FLOWING	STATIC F PSIG	RESIDUAL PSIG	PITOT PSIG	ACTUAL FLOW GPM	AVAIL. I @ 20 P GPN	SIG	
#1 4.5" #2 2.5" #3 2.5"	0.9 0.9 0.8	2	56.9	49.3	27.8	1772	415	58	
				ΤΟΤΑΙ	FLOW:	1772 GPM	418	58 GPM	
TESTED E	3Y: M. DeAn	gelo VEI	RIFIED BY:	J. Worley	Р	ETITION NO:			
COMMENTS	S:		re drop betwee test results. S/			al pressures is les	s than 10	psi which a	affects
REQUESTE	D BY:	Jessica Jur	ıkin, CHW, 352	- 519-5909, j	essicaj@c	hw-inc.com			
	(352)334-	3400 P.O.Box	x 147117, I/O B	ox A122, G	ainesville,	Fl. 32614-7117			

GISNOTEST