

Contract C9Y34
HNTB No.: 71010-DS-007
Task Work Order: 007

Prepared by:
HNTB Corporation
200 Colonial Center Parkway, Suite 200
Lake Mary, Florida 32746

October 12, 2023

DRAFT

Table of Contents

Executive Summary 1
1.0 Introduction 2
2.0 Study Area 2
3.0 Data Collection 3
3.1 Field Review 3
4.0 Development of Traffic Volumes 4
4.1 Traffic Analysis Assumptions 4
4.2 Growth Rate 4
5.0 Traffic and Operational Analysis - No Build Condition 5
5.1 Background Traffic 5
5.2 Operational Analysis 10
5.3 Safety Analysis 12
5.4 Crash Rate Analysis 14
5.5 Proposed Improvement 14
5.6 Benefit-Cost Analysis 16
6.0 Traffic and Operational Analysis -Build Condition 18
6.1 Background Traffic 18
6.2 Operational Analysis 21
6.3 Safety Analysis 22
6.4 Proposed Improvement: 22
6.5 Benefit-Cost Analysis: 22
7.0 Conclusion 24
List of Appendices

List of Figures

Figure 1: Study Area Map 2
Figure 2: 2023 Existing Counts 7
Figure 3: 2025 No Build Traffic Volumes 8
Figure 4: 2035 No Build Traffic Volumes 9
Figure 5: FDOT SR 26 Improvements 12
Figure 6: Collision Heat Map 13
Figure 7: Scenario 2 - Curve Re-alignment at SW 30 ${ }^{\text {th }}$ Ave and SW $266^{\text {th }}$ St 15
Figure 8: Scenario 2 - Curve Re-alignment at SW 30 ${ }^{\text {th }}$ Ave 15
Figure 9: Scenario 3 - Curve Re-alignment 16
Figure 10: 2035 Build Condition Traffic Volume AM 19
Figure 11: 2035 Build Condition Traffic Volume PM 20
List of Tables
Table 1: Data Collection 3
Table 2: Trends Analysis 4
Table 3: 2022 BEBR estimate in Alachua County 4
Table 4: GUATS Growth Rates 5
Table 5: Summary of Growth Rate 5
Table 6: AM Turning Movement Counts 6
Table 7: PM Turning Movement Counts 6
Table 8: AM Existing Condition MOEs 10
Table 9: PM Existing Condition MOEs 10
Table 10: AM No Build Condition MOEs 10
Table 11: PM No Build Condition MOEs 10
Table 12: AM No Build Condition MOEs 11
Table 13: PM No Build Condition MOEs 11
Table 14: No Build Condition Arterial LOS 11
Table 15: Crash Summary by Year 13
Table 16: 2035 Base Condition Crash Prediction 14
Table 17: 2035 Base Condition Crash Prediction After Improvement 16
Table 18: FDOT CABCO Crash Cost 17
Table 19: Improvement Cost - No Build Condition 17
Table 20: 2035 Build Condition TMC 18
Table 21: AM Build Condition MOEs 21
Table 22: PM Build Condition MOEs 21
Table 23: Build Condition Arterial LOS 21
Table 24: 2035 Build Condition Crash Prediction 22
Table 25: 2035 Base Scenario Crash Prediction After Improvement 22
Table 26: FDOT CABCO Crash Cost 23
Table 27: Improvement Cost - Build Condition. 23

Executive Summary

Based on the 2035 No Build condition operational analysis, higher delays are anticipated on the northbound and southbound approaches of the SR 26 at CR 337 and SR 26 at SW 264th St intersections. Delays at these two intersections are increased in the Build condition with the introduction of the Westone development traffic. The intersection of CR 337 at SW 46th Ave operates acceptably under the No Build and Build conditions. The arterial Level of Service of CR 337 remains adequate for both Build and No Build conditions. Florida Department of Transportation's (FDOT) West Newberry Road Improvements Project (Financial Project ID 207850-2) proposes a roundabout at the intersection of SR 26 and CR 337 and improvements at the SR 26 and SW 264th St intersection. This project will address any operational issues associated with these SR 26 intersections.

The safety analysis used crash data from the University of Florida Signal Four Analytics (UFSFA) crash mapping and analysis system for the 60-month period from January 1, 2018, to December 31, 2022. During this period, twenty-five (25) crashes occurred, of which two (2) of them were fatal crashes. Both fatal crashes occurred on a dry roadway surface while drivers were under alcohol/drug influence in both instances. Crashes related to driver impairment due to drugs and/or alcohol are not considered correctable through the introduction of safety countermeasures. Based on the safety analysis, 7 crashes are anticipated to occur in 2035 under the No Build condition while 13 crashes are anticipated to occur in 2035 under the Build condition. This increase is due to the increase in traffic due to the development.

As a means to minimize future crashes, three (3) safety improvements were considered. The first evaluated the crash reduction associated with widening the roadway to 22 feet (11-foot lane in each direction), the second considered widening the roadway while also eliminating the curves by converting each to all-way stop-controlled intersections, and the third increased the radius of the curves to accommodate a 50 MPH design speed.

In order to substantiate improvements within the study area, a comprehensive benefit-cost (B / C) analysis was conducted to provide insights into the feasibility and potential advantages of these safety improvements. The construction and improvement costs for safety countermeasures have been evaluated based on FDOT Design Manual KABCO Crash Costs. The benefit of safety countermeasures was estimated by the number of crashes reduced and the associated crash cost. Crashes associated with impaired drivers were removed from the analysis as these are not considered susceptible to correction. $A B / C$ ratio higher than 1.0 suggests benefits outweigh the costs of an improvement and further consideration should be given to implementing the improvement. Based on the B / C ratios associated with each improvement in the No Build and Build conditions, none of the improvements are considered feasible. Therefore, this study does not recommend installing any improvements at this time.

1.0 Introduction

This study investigates improvements along CR 337 from north of SW 46th Avenue to SR 26 from a traffic operations perspective and its impacts on the local network. The study area encompasses the geographical region bounded by SR 26 to the north, SW 46th Avenue to the south, the county line to the west, and SW 260th Street to the east. Within this delineated boundary, an examination of the County's and private developer's proposed land uses will be conducted to any proposed geometric adjustments for CR 337. This analysis will encompass both the Build (County development only) and No Build conditions, with the impact of the Westone Residential Development project for 2035. Furthermore, a comprehensive benefit-cost analysis has been conducted to provide insights into the feasibility and potential advantages of these proposed improvements.

2.0 Study Area

The study area is along CR 337 from north SW $46^{\text {th }}$ Avenue to SR 26 . Figure 1 provides a study area map.
Figure 1: Study Area Map

3.0 Data Collection

Seventy-two-hour counts and 8-hours turning movement counts (TMC) were collected throughout the study area of this project. Table 1 summarizes the location, type of count, and dates when the data was collected. Appendix A provides the raw counts and seasonal factors.

Table 1: Data Collection

Location	Count Type	Dates
CR 337/SW 46	th $A v e n u e$	8-hr turning movement counts
SR 26/CR 337	8-hr turning movement counts	$6 / 14 / 2023$
SR 26/SW 264	$6 / 15 / 2023$	
SR 26 west of CR 337	8-hr turning movement counts	$6 / 15 / 2023$
SR 26 east of CR 337	$72-\mathrm{hr}$ counts	$6 / 20 / 23-6 / 23 / 23$
NW 266	th Street north of SR 26	$72-\mathrm{hr}$ counts
CR 337 north of SW 46 ${ }^{\text {th }}$ Avenue	$72-\mathrm{hr}$ counts	$6 / 20 / 23-6 / 23 / 23$
CR 337 south of SR 26	72-hr counts	$6 / 20 / 23-6 / 23 / 23$
SW 3 ${ }^{\text {rd }}$ Place east of CR 337	72-hr counts	$6 / 26 / 23-6 / 29 / 23$

3.1 Field Review

A field review was performed by a professional engineer on June 21, 2023. According to the field observations, CR 337 has a posted speed of 55 MPH from SW $46^{\text {th }}$ Avenue to approximately SW $15^{\text {th }}$ Avenue and 45 MPH from SW $15^{\text {th }}$ Avenue to SR 26 . There is no existing street lighting throughout the study area. The roadway pavement exhibits large cracks and multiple potholes. A breakdown of observations per intersection follows.

SR 26 at CR 337

The eastbound approach has a posted speed of 40 MPH and consists of a shared through-right lane, a left turn lane, four-foot wide shoulders and both lanes are 12 feet wide. The left-turn storage length is approximately 340 feet. The westbound approach consists of one through lane, one left turn lane, and a right turn lane, all 12-feet wide and a four-foot wide shoulder. The posted speed in this approach is 40 MPH . Storage lengths for the left and right turn lanes are 400 feet and 300 feet, respectively. The northbound approach has a 9-foot shared lane with no shoulder and a posted speed of 45 MPH . In the southbound approach, there is an 11-foot shared lane with no shoulder and a posted speed of 30 MPH .

SR 26 at SW $264^{\text {th }}$ Street

The eastbound and westbound approaches have a posted speed of 40 MPH and consist of a 12foot shared lane and a five-foot wide shoulder. The northbound and southbound approaches are consistent with a 10-foot shared lane, no shoulder, and a posted speed of 30 MPH .

CR 337 and SW $46^{\text {th }}$ Avenue

The eastbound approach is unpaved, with only one shared lane and no shoulder. The total width of the approach is 23 feet. No speed limit sign is posted along this corridor. The westbound approach consists of an 11-foot shared lane with no shoulder and a posted speed of 55 MPH . Both the northbound and southbound approaches have a 10-foot shared lane with no shoulder and a posted speed of 55 MPH .

4.0 Development of Traffic Volumes

4.1 Traffic Analysis Assumptions

Background traffic was developed for the opening year (2025) and design year (2035). Future traffic conditions and growth rates were based on the methodology described in the 2019 FDOT Project Traffic Forecasting Handbook.

4.2 Growth Rate

Using the FDOT Trends Analysis Tool and the latest FDOT Traffic Online AADTs, updated growth rates were established along SR 26. In addition, the latest Bureau of Economic and Business Research (BEBR) growth rates were used to determine a reasonable updated growth rate for the area. Traffic counts from the past 10 years (2013-2022) were utilized to calculate an average growth rate for the project area. Appendices B and C provide the historical AADT report and the Trends analysis output, respectively. Table 2 provides each segment's growth rates and the overall average growth rate.

Table 2: Trends Analysis

Count Station	Location	First Year of Data	Growth Rate
260004	SR 26 200' W of CR 337	2013	2.42%
260493	SR 26 0.1 MI W of SR 45	2013	1.50%
269157	SW 282	nd $S t$ 0.1 MI S of SR 26	2013
269123	SW 46	th Ave 0.1 MI W of CR 241	2013
Average Growth Rate		1.94%	

Note: Growth Rates were calculated using the most recent 10-year data as recommended in the 2019 Project Traffic Forecasting Handbook
Table 3 provides the most current BEBR population estimate and the average annual growth rates associated with each.

Table 3: 2022 BEBR estimate in Alachua County

Projection	Population Estimates (x1000)				Average Annual Growth Rate $(2025-2035)$
	2022	2025	2030	2035	
Alachua County	287,872				
Low		282,800	285,000	284,300	-0.10%
Medium		297,600	311,500	322,100	0.91%
High		312,500	338,000	360,000	1.93%

Population projections are expected to be higher than the medium range estimated by the considering there are land use developments being planned for this area.

The latest Gainesville Urbanized Area Transportation Study Model's (GUATS) was utilized to provide an additional growth rate based on six segments of road near the project location. Table 4 summarizes each annual growth rate.

Table 4: GUATS Growth Rates

Segment	2015 Model AADT	2045 Model AADT	Annual Growth Rate
SR 26 West of CR 337	6,493	8,284	0.92%
SR 26 East of CR 337	6,507	7,918	0.72%
SR 26 West of US 27	7,951	9,816	0.78%
CR 337 South of SR 26	203	532	5.40%
CR 337 North of SW 46th Ave	856	1,557	2.73%
SW 46th Ave	25	34	1.20%
Average	1.96%		

Considering both Trend analysis and GUATS reflect the recent increase in population, the GUATS growth rate of 1.96% was selected. Table 5 summarizes the trends, BEBR and GUATS rates, and the adopted rate for this report. Future traffic volumes will be calculated using linear growth at 1.96% annually.

Table 5: Summary of Growth Rate

Analysis Tool	Growth Rate
Trends	1.94%
GUATS	1.96%
BEBR	1.93%
Adopted Growth Rate	1.96%

5.0 Traffic and Operational Analysis - No Build Condition

5.1 Background Traffic

The No Build scenario assumes background traffic growth plus the addition of any new County owned/operated facilities within the study area. An adopted growth rate of 1.96% and a seasonal factor of 1.01 were applied to TMCs collected in June 2023 to develop traffic for 2025 and 2035. In addition, to background growth, the County expects a facility operated by Life Soils, LLC to be located along CR 337. This site is expected to generate 46 total trips per day (23 inbound/ 23 outbound). As these trips will occur outside the limits of the AM and PM peak hours, there is no impact to the traffic operations associated with this study. Tables 6 and 7 as well as Figures 2 through 4 provide 2023, 2025, and 2035 seasonally corrected counts for both the AM and PM peaks, respectively.

Table 6: AM Turning Movement Counts

Intersection	Year	Northbound			Southbound			Eastbound			Westbound		
		L	T	R	L	T	R	L	T	R	L	T	R
SR 26 and CR 337	2023	9	3	66	14	3	4	6	586	26	29	180	9
	2025	10	4	69	15	4	5	7	610	28	31	189	10
	2035	12	4	82	18	4	5	8	724	33	36	223	12
SR 26 and SW 264 ${ }^{\text {th }}$ St	2023	4	0	14	3	0	0	1	663	2	2	214	0
	2025	5	0	15	4	0	0	2	689	3	3	223	0
	2035	5	0	18	4	0	0	2	819	3	3	266	0
CR 337 and SW 46 ${ }^{\text {th }}$ Ave	2023	3	39	41	2	24	2	2	16	2	9	2	0
	2025	4	41	43	3	25	3	3	17	3	10	3	0
	2035	4	49	51	3	30	3	3	20	3	12	3	1

Table 7: PM Turning Movement Counts

Intersection	Year	Northbound			Southbound			Eastbound			Westbound		
		L	T	R	L	T	R	L	T	R	L	T	R
SR 26 and CR 337	2023	13	6	59	17	5	4	3	348	9	101	656	31
	2025	14	7	62	18	6	5	4	363	10	105	684	33
	2035	17	8	73	21	7	5	4	430	12	125	811	39
SR 26 and SW $264^{\text {th }}$ St	2023	3	0	7	1	0	1	0	420	3	15	784	4
	2025	4	0	8	2	0	2	0	437	4	16	815	5
	2035	4	0	9	2	0	2	0	520	4	19	969	5
CR 337 and SW 46 ${ }^{\text {th }}$ Ave	2023	8	38	13	0	54	5	0	3	5	29	8	6
	2025	9	40	14	0	57	6	0	4	6	31	9	7
	2035	10	47	17	0	67	7	0	4	7	36	10	8

5.2 Operational Analysis

Synchro 11.0 and FDOT 2020 Quality/Level of Service Handbook were used to analyze existing and future traffic conditions. Tables 8 through 13 summarize approach delay and level of service for each of the study intersections from Synchro 11.0 and Table 14 summarizes the arterial LOS from FDOT QLOS Handbook.

Table 8: AM Existing Condition MOEs

2023 AM Existing Condition MOE									
Intersection	Approach								
	Eastbound	Westbound	Northbound	Southbound					
	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	
SR 26 and CR 337	0.1		1.4		16.1	C	24.0	C	
SR 26 and SW 264 St	0		0.1		15.5	C	21.4	C	
CR 337 and SW 46 ${ }^{\text {th }}$ Ave	9.8	A	9.8	A	0.3		0.5		

Table 9: PM Existing Condition MOEs

2023 PM Existing Condition MOE								
Intersection	Approach							
	Eastbound		Westbound	Northbound	Southbound			
	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
SR 26 and CR 337	0.2		1.3		26.5	D	72.3	F
SR 26 and SW 264 th	0.0		0.2		18.9	C	26.1	D
CR 337 and SW 46	Ave	9.2	A	9.9	A	1.0		0.0

Table 10: AM No Build Condition MOEs

2025 AM MOE								
Intersection	Approach							
	Eastbound		Westbound		Northbound		Southbound	
	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
SR 26 and CR 337	0.2		1.5		17.2	C	26.2	D
SR 26 and SW 264 ${ }^{\text {th }}$ St	0.0		0.1		16.4	C	22.8	C
CR 337 and SW 46 ${ }^{\text {th }}$ Ave	9.8	A	9.9	A	0.3		0.7	

Table 11: PM No Build Condition MOEs

2025 PM No Build Condition MOE								
Intersection	Approach							
	Eastbound		Westbound		Northbound		Southbound	
	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
SR 26 and CR 337	0.2		1.3		32.4	D	97.1	F
SR 26 and SW $264{ }^{\text {th }}$ St	0.0		0.2		19.3	C	28.9	D
CR 337 and SW 46 ${ }^{\text {th }}$ Ave	9.2	A	10	B	1.1		0	

Table 12: AM No Build Condition MOEs

2035 AM No Build Condition MOE								
Intersection	Approach							
	Eastbound		Westbound		Northbound		Southbound	
	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
SR 26 and CR 337	0.2		1.5		22.3	C	43.5	E
SR 26 and SW 264 ${ }^{\text {th }}$ St	0.0		0.1		19.5	C	30.1	D
CR 337 and SW 46 ${ }^{\text {th }}$ Ave	10.0	B	10.1	B	0.3		0.6	

Table 13: PM No Build Condition MOEs

2035 PM No Build Condition MOE								
Intersection	Approach							
	Eastbound		Westbound		Northbound		Southbound	
	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
SR 26 and CR 337	0.2		1.4		92.2	F	342.7	F
SR 26 and SW 264 ${ }^{\text {th }}$ St	0.0		0.2		28.4	D	40.8	E
CR 337 and SW 46 ${ }^{\text {th }}$ Ave	9.3	A	10.3	B	1.0		0	

Table 14: No Build Condition Arterial LOS

Roadway Segment	Service Volume		2023 LOS		2025 LOS		$\begin{aligned} & 2035 \text { LOS } \\ & \text { (No Build) } \end{aligned}$	
	AADT	LOS	AADT	LOS	AADT	LOS	AADT	LOS
CR 337	9,288	C	1,800	C	1,871	C	2,269	C
SR 26 (E of CR 337)	10,320	C	14,500	E	15,068	E	17,910	E
SR 26 (W of CR 337)			11,000	C	11,431	E	13,587	E
SW 46 ${ }^{\text {th }}$ Ave	9,288	C	1,200	C	1,247	C	1,482	C

As shown in Table 9 and Table 11 the southbound approach at the intersection of SR 26 and CR 337 is experiencing higher delays despite the low volumes on the side street. Similarly, in the 2035 PM No Build Scenario, both SR 26 at CR 337 and SR 26 at SW $264^{\text {th }}$ St northbound and southbound approaches are experiencing higher delays. These delays are common for the stop-controlled approaches at unsignalized intersections.

The FDOT's West Newberry Road Improvements Project (Financial Project ID 207850-2) evaluated the SR 26 corridor through Newberry and proposes to construct a roundabout at the CR 337 / SR 26 intersection and improve the SW $264^{\text {th }}$ St / SR 26 intersection. These improvements would eliminate the operational issues identified in the 2035 No Build analysis. Figure 5 is a rendering of the proposed improvements.

Figure 5: FDOT SR 26 Improvements

5.3 Safety Analysis

Crash data was obtained from the University of Florida Signal Four Analytics (UFSFA) crash mapping and analysis system for the 60-month period from January 1, 2018, to December 31, 2022. There were 25 reported crashes during this period that resulted in 15 injuries, two (2) fatalities, and $\$ 178,500$ in property damage. Table 15 summarizes the crash type by year and Figure 6 provides a heatmap of the crash locations. A detailed summary of all the crashes can be found in Appendix D.

There were two (2) crashes resulting in two (2) fatalities along CR 337 during the study period. The first fatal crash was the result of an off-road event where the driver lost control and swerved across the road into a culvert before overturning. This occurred at the bend on CR 337, where the County Road transitions from SW $30^{\text {th }}$ Ave to SW $266^{\text {th }} \mathrm{St}$. The crash occurred during the day in cloudy weather, with a dry roadway surface. The driver of this vehicle was under alcohol and drug influence.

The second fatality was also a result of an off-road crash, which occurred when the driver failed to negotiate the curve where CR 337 transitions from SW $30^{\text {th }}$ Ave to SW $282^{\text {nd }}$ St. The vehicle traveled off the paved roadway, began to rotate, and finally overturned and rolled to a stop. The crash occurred at night with no lights illuminating the road at the location of the crash. The weather was clear and the road surface was dry. The driver involved in this crash was under alcohol influence.

Crashes related to driver impairment due to drugs and/or alcohol are not considered correctable through the introduction of safety countermeasures.

Table 15: Crash Summary by Year

Type	2018	2019	2020	2021	2022	Total
Property Damage Only	2	4	3	3	3	15
Possible Injury	0	2	0	1	0	3
Non-Incapacitating Injury	2	1	0	1	1	5
Incapacitating Injury	0	0	0	0	0	0
Fatal	1	0	1	0	0	2
Total	5	7	4	5	4	25

Figure 6: Collision Heat Map

5.4 Crash Rate Analysis

Based on the summary data in Table 15, the average number of crashes per year for the study segment is 5 crashes/year from 2018 to 2022. The crash rate was calculated using the formula below, expressed as the number of crashes per million vehicle miles (MVM). The actual crash rate is calculated from the number of crashes in a year, AADT, and the length of the segment based on the equation below:

$$
\begin{gathered}
\text { Crash Rate }=\frac{\text { Number of crashes per year } * 1,000,000}{(\text { AADT } * 365 \text { days } * \text { segment length })} \\
022 \text { Crash Rate }
\end{gathered}=\frac{5 * 1,000,000}{(1800 * 365 \text { days } * 3.39)}=2.24 \text { crashes } / \mathrm{MVM} \text {. }
$$

The crash rate was assumed to be constant through the design year 2035. Using the growth factor of 1.96%, the estimated AADT for 2035 is 2,224 vehicles. Using this forecasted AADT the following number of crashes can be forecasted for 2035 No Build condition.

$$
\text { Number of crashes in } 2035=(2.24 * 2224 * 365 * 3.39) / 1,000,000=6.16=7 \text { crashes/year }
$$

The crash rate has also been estimated for the design year for each crash type as shown in Table 16.

Table 16: 2035 Base Condition Crash Prediction

Type	5 Years Crash Rate	2035 Crash Number
Property Damage Only	1.35	4
Possible Injury	0.27	1
Non-Incapacitating Injury	0.45	1
Incapacitating Injury	0.00	0
Fatal*	0.18^{*}	0^{*}
Total	2.24	7

* Crashes due to driver impairment are not considered correctable and are removed from further analyses.

5.5 Proposed Improvement

Three scenarios have been considered as the improvements. With the introduction of the FDOT project at the intersection of SR 26 and CR 337, no improvements were considered at the intersection. With 10 of the 25 collisions along the corridor involving vehicles going off the road or hitting a tree/shrub adjacent to the road, widening the roadway is a possible corrective action. Per the draft 2023 Edition of the FDOT Manual of Uniform Minimum Standards for Design, Construction and Maintenance for Streets and Highways (Florida Greenbook), a rural roadway section with average daily traffic greater than 1,500 vehicles per day, regardless of speed, requires 12-foot lanes unless the design speed is below 50 MPH (Table 3-20). CR 337 currently has ADTs above 1,800 vehicles per day. The following scenarios assume any roadway changes would be designed to the 50 MPH threshold.

- Scenario 1: Widening the roadway to 22 feet (11-foot lane in each direction)
- Scenario 2: Eliminate the curves and change the geometry to a four-leg intersection with an allway stop control at SW $266{ }^{\text {th }}$ St and a three-leg all-way stop at SW $30^{\text {th }}$ Ave
- Scenario 3: Increase the radius of the curves to maintain a 50 MPH design speed

The volumes for 2035 have been evaluated for the all-way stop control. Per the MUTCD minimum criteria, all-way stop control is not warranted at either location. The introduction of the all-way stop will likely increase rear-end collisions. Figure 7 through Figure 9 show high-level concepts of the proposed geometric changes.

Figure 7: Scenario 2 - Curve Re-alignment at SW 30 ${ }^{\text {th }}$ Ave and SW 266 ${ }^{\text {th }}$ St

Figure 8: Scenario 2 - Curve Re-alignment at SW 30 ${ }^{\text {th }}$ Ave

Figure 9: Scenario 3 - Curve Re-alignment

5.6 Benefit-Cost Analysis

A benefit-cost analysis has been conducted for the proposed improvements using Crash Modification Factors (CMF). Since crashes related to driver impairment due to drugs and/or alcohol are not considered correctable through the introduction of safety countermeasures, these crashes have been removed from the benefit-cost analysis. CMF documentation can be found in Appendix E.

Scenario 1: From the CMF Clearinghouse, the CMF for increasing 1 ft on both sides is 0.95 . The CMF for 2 ft widening is $=0.950 \times 0.950 \times 0.929=0.847$

Scenario 2: From the CMF Clearinghouse, the CMF for flattening/removing the horizontal curve is 0.330. With the combination of flattening the curve and 2 ft widening with milling and resurfacing the existing pavement, the CMF for this scenario is $=0.33 \times 0.847 \times 1.03=0.288$

Scenario 3: Similar to Scenario 2, the CMF for flattening/removing the horizontal curve is 0.330 . With the combination of flattening the curve and 2 ft widening with milling and resurfacing the existing pavement, the CMF for this scenario is $=0.33 \times 0.847=0.280$

The predicted crash number for year 2035 after applying the CMF is shown in Table 17.
Table 17: 2035 Base Condition Crash Prediction After Improvement

Type	2035 Crash Number	Scenario 1	Scenario 2	Scenario 3
Property Damage Only	4	3	1	1
Possible Injury	1	1	0	0
Non-Incapacitating Injury	1	1	0	0
Incapacitating Injury	0	0	0	0
Total	6	5	1	1

Table 18 provides the 2020 FDOT Design Manual KABCO Crash Costs escalated to 2035.
Table 18: FDOT CABCO Crash Cost

Crash Severity	Comprehensive Crash Cost (2020)	Predicted Cost for 2035 $(\mathrm{i}=3 \%)$
Fatal (K)	$\$ 10,890,000$	$\$ 16,966,265$
Severe Injury (A)	$\$ 888,030$	$\$ 1,383,522$
Moderate Injury (B)	$\$ 180,180$	$\$ 280,715$
Minor Injury (C)	$\$ 103,950$	$\$ 161,951$
Property Damage Only (O)	$\$ 7,700$	$\$ 11,996$

The construction and improvement costs for all the scenarios have been evaluated. Table 19 shows the cost estimation for the proposed improvements for the current year (2023) and the future year (2035). The benefit for each scenario has also been calculated using the number of crashes reduced by the implementation of countermeasures along with the predicted cost for the future year for each crash type and extrapolated over 12 years. Right-of-way (R / W) acquisition has not been considered towards the improvement cost. The B / C ratio of scenarios 2 and 3 will decrease with the introduction of R / W costs. The details of improvement cost are shown in Appendix F.

Table 19: Improvement Cost - No Build Condition

Scenarios	2023 Improvement Cost	2035 Improvement Cost	Benefit from Crash Reduction	B/C Ratio
Scenario 1	$\$ 4,995,500$	$\$ 7,122,389$	$\$ 143,952$	0.02
Scenario 2	$\$ 6,995,800$	$\$ 9,974,338$	$\$ 5,743,848$	0.58^{*}
Scenario 3	$\$ 11,514,900$	$\$ 16,417,494$	$\$ 5,743,848$	0.34^{*}

*Cost of R / W accusation not included

6.0 Traffic and Operational Analysis -Build Condition

6.1 Background Traffic

The Westone Residential Development is a proposed project situated at the southwest corner of the SR 26 and CR 337 intersection. Westone is slated to comprise a total of 850 single-family residential units. Among these, 681 will be detached single-family homes, and 169 will be townhouse-style attached singlefamily homes. The anticipated completion timeline for this development is set for the year 2035.

A Traffic Impact Analysis (TIA) report developed by Hagan Consultant Services LLC for the proposed Westone Residential Development details the expected trip generation and distribution of the site. The TIA report considered access to the development primarily via SR 26 and CR 337. The TIA report is attached as Appendix G.

Table 20, as well as Figure 10 and Figure 11, provide the 2035 seasonally corrected peak hour traffic counts along development traffic.

Table 20: 2035 Build Condition TMC

Intersection	Peak	Northbound			Southbound			Eastbound			Westbound		
		L	T	R	L	T	R	L	T	R	L	T	R
SR 26 and CR 337	AM	12	4	207	18	4	5	8	939	33	80	298	12
	PM	17	8	160	21	7	5	4	580	12	269	1060	39
SR 26 and SW 264 ${ }^{\text {th }}$ St	AM	5	0	18	4	0	0	2	1159	3	3	385	0
	PM	4	0	9	2	0	2	0	757	4	19	1362	5
CR 337 and SW 46 ${ }^{\text {th }}$ Ave	AM	4	49	51	3	30	3	3	20	3	12	3	0
	PM	10	47	17	0	67	7	0	4	7	36	10	8

6.2 Operational Analysis

Synchro 11.0 and FDOT 2020 Quality/Level of Service Handbook were used to analyze Build condition future traffic conditions based on the 2035 forecasted volumes and the movement due to development. Table 21 and Table 22 summarize approach delay and level of service for each of the two-way stopcontrolled intersections from Synchro 11.0 and Table 23 summarizes the arterial LOS from FDOT QLOS Handbook.

Table 21: AM Build Condition MOEs

2035 AM Build Condition MOE								
Intersection	Approach							
	Eastbound		Westbound		Northbound		Southbound	
	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
SR 26 and CR 337	0.1		2.7		127.7	F	1685	E
SR 26 and SW 264 ${ }^{\text {th }}$ St	0.0		0.1		35.1	E	66.3	F
CR 337 and SW 46 ${ }^{\text {th }}$ Ave	10.0	B	10.1	B	0.3		0.6	

Table 22: PM Build Condition MOEs

2035 PM Build Condition MOE								
Intersection	Approach							
	Eastbound		Westbound		Northbound		Southbound	
	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
SR 26 and CR 337	0.2		2.6		*	F	*	F
SR 26 and SW $2644^{\text {th }}$ St	0.0		0.1		98.4	F	134.1	F
CR 337 and SW 46 ${ }^{\text {th }}$ Ave	9.3	A	10.3	B	1.0		0	

*Volume exceeds capacity
Table 23: Build Condition Arterial LOS

Roadway Segment	Service Volume		2023 LOS		2035 LOS (Build)	
	AADT	LOS	AADT	LOS	AADT	LOS
CR 337	9,288	C	1,800	C	4,622	C
SR 26 (E of CR 337)	10,320	C	14,500	E	24,328	E
		C 26 (W of CR 337)	17,652	E		
SW 46 ${ }^{\text {th }}$ Ave	9,288	C	1,200	C	1,482	C

With the FDOT improvements slated for the intersections at SR 26 at CR 337 and SR 26 at SW $264^{\text {th }}$ St, the future operations of these intersections are expected to meet level of service standards. The Westone development is not expected to distribute traffic to the south on CR 337 and therefore operations at SW $46{ }^{\text {th }}$ Ave will continue to meet level of service standards. From an arterial operations perspective, CR 337 has adequate capacity to accommodate the traffic demand through 2035. The FDOT SR 26 improvements will address the capacity issues associated with the state road.

6.3 Safety Analysis

According to the TIA, there are 7,131 estimated trips generated from the development in the design year 2035 and 33 percent of that traffic will be traveling on CR 337. Combining the background traffic and the development traffic results in an AADT for the design year 2035 of 4,578 on CR 337. Using the previously calculated crash rate crash rate of 2.24 , the number of predicted crashes in 2035 after the development can be calculated using the following formula,

Number of crashes in $2035=\left(2.24^{*} 4578^{*} 365 * 3.39\right) / 1,000,000=12.69=13$ crashes/year

The crash rate has also been estimated for the 2035 Build condition for each crash type as shown in Table 24.

Table 24: 2035 Build Condition Crash Prediction

Type	2025 Total	5 Years Crash Rate	2035 Crash Number
Property Damage Only	15	1.35	8
Possible Injury	3	0.27	1
Non-Incapacitating Injury	5	0.45	3
Incapacitating Injury	0	0.00	0
Fatal	2^{*}	0.18^{*}	-
Total	25	2.24	12

*Crashes due to driver impairment are not considered correctable and are removed from further analyses.

6.4 Proposed Improvement:

The proposed improvements for the Build condition are the same as the background condition of 2035.

- Scenario 1: Widening the roadway to 22 ft (11ft lane in each direction)
- Scenario 2: Eliminate the curves and change the geometry to a four-leg intersection with all-way stop control.
- Scenario 3: Flatten the curves to accommodate a 50 MPH design speed.

6.5 Benefit-Cost Analysis:

To evaluate the benefit-cost for the future build year 2035 with the proposed development, the same CMF has been used as the No Build condition since the proposed improvement is similar.

The predicted crash number for the year 2035, after applying the CMF, is shown in Table 25
Table 25: 2035 Base Scenario Crash Prediction After Improvement

Type	2035 Crash Number	Scenario 1	Scenario 2	Scenario 3
Property Damage Only	8	6	2	2
Possible Injury	1	1	0	0
Non-Incapacitating Injury	3	2	1	1
Incapacitating Injury	0	0	0	0
Total	12	9	3	3

Table 26 provides the 2020 FDOT Design Manual KABCO Crash Costs with an escalation to 2035.
Table 26: FDOT CABCO Crash Cost

Crash Severity	Comprehensive Crash Cost (2020)	Predicted Cost for 2035 $(\mathrm{i}=3 \%)$
Fatal (K)	$\$ 10,890,000$	$\$ 16,966,265$
Severe Injury (A)	$\$ 888,030$	$\$ 1,383,522$
Moderate Injury (B)	$\$ 180,180$	$\$ 280,715$
Minor Injury (C)	$\$ 103,950$	$\$ 161,951$
Property Damage Only (0)	$\$ 7,700$	$\$ 11,996$

The construction and improvement costs for each scenario have been evaluated. Table 27 shows the cost estimation for the proposed improvements for the current year (2023) and the future year (2035). The benefit for each scenario has also been calculated by the number of crash reductions with the predicted cost for the future year for each crash type. The cost of R / W acquisition has not been considered towards the improvement cost. The B/C ratio of scenarios 2 and 3 will be lower with the introduction of R / W acquisition. The details of improvement cost are shown in Appendix F.

Table 27: Improvement Cost - Build Condition

Scenarios	2023 Improvement Cost	2035 Improvement Cost	Benefit from crash reduction	B/C Ratio
Scenario 1	$\$ 4,995,500$	$\$ 7,122,389$	$\$ 3,656,484$	0.51
Scenario 2	$\$ 6,995,800^{*}$	$\$ 9,974,338^{*}$	$\$ 9,544,284$	0.96^{*}
Scenario 3	$\$ 11,514,900$	$\$ 16,417,494$	$\$ 9,544,284$	0.58^{*}

[^0]
7.0 Conclusion

This study was conducted to investigate if geometric improvements are necessary along CR 337 from SW 46th Ave to SR 26 based on future traffic volumes and safety issues. The study evaluated existing conditions and two future years, 2025 and 2035 with a focus on three intersections (SR 26 at CR 337, SR 26 at SW 264th St, and CR 337 at SW 46th Ave) and the two curves along CR 337. The No Build condition considered background traffic growth and the inclusion of County owned/operated facilities along CR 337 for the years 2025 and 2035. The Build condition included the same growth as the No Build condition plus the addition of the Westone Residential Development. The growth rate was determined as 1.96% based on three sources (i) FDOT Trend Analysis (ii) Bureau of Economic and Business Research (BEBR) (iii) Gainesville Urbanized Area Transportation Study Model's (GUATS). Westone development traffic was extracted from the developer's traffic impact study.

Based on the 2035 No Build condition operational analysis, higher delays are anticipated on the northbound and southbound approaches of the SR 26 at CR 337 and SR 26 at SW 264th St intersections. Delays at these two intersections are increased in the Build condition with the introduction of the Westone development traffic. The intersection of CR 337 at SW 46 th Ave operates acceptably under the No Build and Build conditions. The arterial Level of Service of CR 337 remains adequate for both Build and No Build conditions. FDOT's West Newberry Road Improvements Project (Financial Project ID 207850-2) proposes a roundabout at the intersection of SR 26 and CR 337 and improvements at the SR 26 and SW 264th St intersection. This project will address any operational issues associated with these SR 26 intersections.

The safety analysis used crash data from the University of Florida Signal Four Analytics (UFSFA) crash mapping and analysis system for the 60 -month period from January 1, 2018, to December 31, 2022. During this period, twenty-five (25) crashes occurred, of which two (2) of them were fatal crashes. Both fatal crashes occurred on a dry roadway surface while drivers were under alcohol/drug influence in both instances. Crashes related to driver impairment due to drugs and/or alcohol are not considered correctable through the introduction of safety countermeasures. Based on the safety analysis, 7 crashes are anticipated to occur in 2035 under the No Build condition while 13 crashes are anticipated to occur in 2035 under the Build condition. This increase is due to the increase in traffic due to the development.

As a means to minimize future crashes, three (3) safety improvements were considered. The first evaluated the crash reduction associated with widening the roadway to 22 feet (11-foot lane in each direction), the second considered widening the roadway while also eliminating the curves by converting each to all-way stop-controlled intersections, and the third increased the radius of the curves to accommodate a 50 MPH design speed.

In order to substantiate improvements within the study area, a comprehensive benefit-cost (B / C) analysis was conducted to provide insights into the feasibility and potential advantages of these safety improvements. The construction and improvement costs for safety countermeasures were evaluated based on FDOT Design Manual KABCO Crash Costs. The benefit of safety countermeasures was estimated by the number of crashes reduced and the associated crash cost. Crashes associated with impaired drives were removed from the analysis as these are not considered susceptible to correction. A B/C ratio higher than 1.0 suggests benefits outweigh the costs of an improvement and further consideration should be given to implementing the improvement. Based on the B / C ratios associated with each improvement in the No Build and Build conditions, none of the improvements are considered feasible. Therefore, this study does not recommend installing any improvements at this time.

APPENDIX A Traffic Movement Count

CR 337 (SW 282nd St) and SW 46th Ave
Newberry, Florida

CR 337 (SW 282nd St) and SW 46th Ave
Newberry, Florida

CR 337 (SW 282nd St) and SW 46th Ave

Newberry, Florida

Time	Wednesday, June 14, 2023																		Eastbound SW 46th Ave						vehicle total
	$\begin{gathered} \text { Southbound } \\ \text { CR } 337 \text { (SW 282ndSt) } \end{gathered}$						Westbound SW 46th Ave						$\begin{aligned} & \text { Northbound } \\ & \text { CR } 337 \text { (SW 282ndSt) } \end{aligned}$												
	U Turns	Left Turns	Straight Through	$\begin{aligned} & \text { Right } \\ & \text { Turns } \end{aligned}$	Crosswalk Crossings	Vehicle Approach Total	U Turns	Left Turns	Straight Through	$\begin{aligned} & \text { Right } \\ & \text { Turns } \end{aligned}$	Crosswalk Crossings	Vehicle Approach Total	U Turns	Left Turns	Straight Through	$\begin{aligned} & \text { Right } \\ & \text { Turns } \end{aligned}$	Crosswalk Crossings	Vehicle Approach Total	U Turns	Left Turns	Straight Through	$\begin{aligned} & \text { Right } \\ & \text { Turns } \end{aligned}$	Crosswalk Crossings	Vehicle Approach Total	
4:00 PM	0	0	14	1	0	15	0	8	1	1	0	Total 10	0	5	8	6	-	Total 19	0	0	,	1	Crosing	Total 2	46
4:15 PM	0	0	14	1	0	15	0	6	4	4	0	14	0	2	11	5	0	18	0	0	1	3	0	4	51
4:30 PM	0	0	14	1	0	15	0	8	2	1	0	11	0	0	12	1	0	13	0	0	0	1	0	1	40
4:45 PM	0	0	12	2	0	14	0	7	1	0	0	8	0	1	7		0	9		0	1	0	0	1	32
Hourly Total	0	0	54	5	0	59	0	29	8	6	0	43	0	8	38	13	0	59	0	0	3	5	0	8	169
5:00 PM	0	0	5	1	0	6	0	9	3	2	0	14	0	0	11	3	0	14	0	0	1	1	0	2	36
5:15 PM	0	0	24	1	0	25	0	6	2	0	0	8	0	1	6	1	0	8	0	0	0	0	0	0	41
5:30 PM	0	0	7	0	0	7	0	8	2	1	0	11	0	2	7	7	0	16	0	0	0	0	0	0	34
5:45 PM	0	0	12	0	0	12	0	9	2	2	0	13	0	0	5	1	0	6	0	1	0	1	0	2	33
Hourly Total	0	0	48	2	0	50	0	32	9	5	0	46	0	3	29	12	0	44	0	1	1	2	0	4	144
6:00 PM	0	0	18	2	0	20	0	9	1	1	0	11	0	1	4	2	0	7	0	0	3	0	0	3	41
6:15 PM	0	1	9	0	0	10	0	5	0	2	0	7	0	2	11	5	0	18	0	0	0	1	0	1	36
6:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	1	27	2	0	30	0	14	1	3	0	18	0	3	15	7	0	25	0	0	3	1	0	4	77
7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:45 PM	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
10:45 PM	0	0	,	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DAILY TOTAL	0	19	354	28	0	401	1	180	65	38	0	284	1	38	347	217	0	603	1	16	75	35	0	127	1415
Cars	0	17	331	28	0	376	1	174	60	37	0	272	1	34	331	213	0	579		16	74	34	0	125	1352
Heavy Vehicles	0	2	23	0	-	25	0	6	5	1	0	12	0	4	16	4	0	24	0	0	1	1		2	63
Heavy Vehicle \%	0.00\%	10.53\%	6.50\%	0.00\%	0.00\%	6.23\%	0.00\%	3.33\%	7.69\%	2.63\%	0.00\%	4.23\%	0.00\%	10.53\%	4.61\%	1.84\%	0.00\%	3.98\%	0.00\%	0.00\%	1.33\%	2.86\%	0.00\%	1.57\%	4.45\%

CR 337 (SW 282nd St) and SW 46th Ave
 Newberry, Florida

Wednesday, June 14, 2023

$$			802		
			Vehicles Exiting Intersection		401
Southbound					
Cars	28	331	17	0	0
Heavy	0	23	2	0	0
Total	28	354	19	0	0
		,			か\%

$\begin{gathered} \text { Total } \\ \text { Vehicles } \\ \text { on Leg } \\ 259 \end{gathered}$	$\begin{gathered} \text { Venicles } \\ \text { Entering } \\ \text { Intersection } \\ 127 \end{gathered}$		Cars	Heavy	Total
			0	0	
			1	0	
			16	0	16
			74	1	75
	132		34	1	35

	Cars	Heavy	Total		$\begin{array}{\|c} \text { Venicles } \\ \text { Entering } \\ \text { Intersection } \\ 284 \end{array}$	$\begin{gathered} \text { Total } \\ \text { Vehicles } \\ \text { on Leg } \\ 596 \end{gathered}$
	37	1	38			
	60	5	65			
	174	6	180			
	1	0	1		(nxting	
si大	0	0	0		312	

SR 26 and CR 337 (SW 266th St)/NW 266th St
Newberry, Florida

SR 26 and CR 337 (SW 266th St)/NW 266th St
Newberry, Florida

SR 26 and CR 337 (SW 266th St)/NW 266th St
Newberry, Florida

Time	Thursday, June 15, 2023																		Eastbound SR 26						vehicle total
	Southbound NW 266th St						Westbound SR 26						NorthboundCR 337 (SW 266th St)												
	UTurns	Left Turns	Straight Through	$\begin{aligned} & \text { Right } \\ & \text { Turns } \end{aligned}$	Crosswalk Crossings	Vehicle Approach Total	U Turns	Left Turns	Straight Through	$\begin{aligned} & \text { Right } \\ & \text { Turns } \end{aligned}$	Crosswalk Crossings	Vehicle Approach Total	U Turns	Left Turns	Straight Through	$\begin{aligned} & \text { Right } \\ & \text { Turns } \end{aligned}$	Crosswalk Crossings	Vehicle Approach Total	U Turns	Left Turns	Straight Through	Right Turns	Crosswalk Crossings	Vehicle Approach	
4:00 PM	0	1	2	1	0	4	0	22	146	6	0	${ }_{1}^{\text {Total }}$	0	8	1	13	-	Total 22	0	0	64	3	Crosing	Total 67	267
4:15 PM	0	4	2	4	3	10	0	19	132	5	0	156	0	5	1	19	0	25	0	1	70	6	0	77	268
4:30 PM	0	3	4	3	0	10	0	20	135	4	0	159	0	3	2	20	0	25	0	0	80	3	0	83	277
4:45 PM	0	4	2	1	0	7	0	26	155	6	0	187	0	2	2	15	0	19	0	2	90	0	0	92	305
Hourly Total	0	12	10	9	3	31	0	87	568	21	0	676	0	18	6	67	0	91	0	3	304	12	0	319	1117
5:00 PM	0	2	0	1	0	3	0	22	162	9	0	193	1	1	1	20	0	23	0	0	72	2	0	74	293
5:15 PM	0	7	0	0	0	7	0	30	161	10	0	201	0	5	1	12	2	18	0	1	101	4	0	106	332
5:30 PM	0	4	3	2	0	9	0	22	169	6	0	197	0	4	2	12	0	18	0	0	82	,	0	85	309
5:45 PM	0	2	1	2	0	5	0	29	133	4	0	166	0	2	0	9	0	11	0	3	73	2	0	78	260
Hourly Total	0	15	4	5	0	24	0	103	625	29	0	757	1	12	4	53	2	70	0	4	328	11	0	343	1194
6:00 PM	0	3	1	2	0	6	0	23	136	6	0	165	0	2	3	11	0	16	0	0	68	7	0	75	262
6:15 PM	0	1	2	1	0	4	0	17	121	13	0	151	0	5	2	7	0	14	0	1	58	1	0	60	229
6:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	4	3	3	0	10	0	40	257	19	0	316	0	7	5	18	0	30	0	1	126	8	0	135	491
7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30 PM	0	0	0	0	0	,	0	0	0	0	0	0	0	0	0	0		0	0	0		0	0	0	0
10:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dally total	0	135	66	43	4	244	1	628	4310	177	0	5116	2	117	64	633	2	816	0	29	4290	133	0	4452	10628
Cars	0	132	26	42	4	200	1	586	4093	173	,	4853	2	111	27	591	1	731	0	24	4114	123	0	4261	10045
Heavy Vehicles	0	3	40	1	0	44	0	42	217	,	0	263	0	6	37	42	1	85	0	5	176	10	.	191	583
Heavy Vehicle \%	0.00\%	2.22\%	60.61\%	2.33\%	0.00\%	18.03\%	0.00\%	6.69\%	5.03\%	2.26\%	0.00\%	5.14\%	0.00\%	5.13\%	57.81\%	6.64\%	50.00\%	10.42\%	0.00\%	17.24\%	4.10\%	7.52\%	0.00\%	4.29\%	5.49\%

SR 26 and CR 337 (SW 266th St)/NW 266th St
Newberry, Florida
Thursday, June 15, 2023

Vehicles Entering ${ }^{\text {Total }}$ Vehicles On Leg			514		
			Vehicles ExitingIntersection		270
Southbound					
Cars	42	26	132	0	4
Heary	1	40	3	0	0
Total	43	66	135	0	4
					¢犬

$\begin{gathered} \text { Total } \\ \text { Vehicles } \\ \text { on Leg } \\ 8922 \end{gathered}$	$\begin{array}{\|c} \text { Vehicles } \\ \text { Entering } \\ \text { Intersection } \\ 4452 \end{array}$		Cars	Heavy	Total
			0	0	0
			0	0	0
			24	5	29
	$\begin{gathered} \text { Vehicles } \\ \text { Exiting } \\ \text { Intersection } \end{gathered}$		4114	176	4290
	4470		123	10	133

Cars	Heavy	Total		$\begin{array}{\|c} \text { Venicles } \\ \text { Entering } \\ \text { Intersection } \\ 516 \end{array}$	$\begin{array}{\|c\|c} \text { Total } \\ \text { Vehicles } \\ \text { on Leg } \\ 10175 \end{array}$
173	4	177			
4093	217	4310			
586	42	628			
1	0	1		$\begin{array}{\|l\|l\|} \text { venictes } \\ \text { Exiting } \\ \text { Intersection } \end{array}$	
0	0	0		5059	

SR 26 and SW/NW 264th St

SR 26 and SW/NW 264th St

SR 26 and SW/NW 264th St

	Southbound NW 264th St						WestboundSR 26						Northbound SW 264th St						Eastbound SR 26						vehicle total
Time	UTurns	Left Turns	Straight Through	$\begin{aligned} & \text { Right } \\ & \text { Turns } \end{aligned}$	Crosswalk Crossings	Vehicle Approach	U Turns	Left Turns	Straight Through	$\begin{aligned} & \text { Right } \\ & \text { Turns } \end{aligned}$	Crosswalk Crossings	Vehicle Approach	U Turns	Left Turns	Straight Through	Right	Crosswalk Crossings	Vehicle Approach	U Turns	Left Turns	Straight Through	$\begin{aligned} & \text { Right } \\ & \text { Turns } \end{aligned}$	Crosswalk Crossings	Vehicle Approach	
4:00 PM	0	2	0	1	0	Total 3	0	7	173	1	Crsing	$\begin{gathered} \text { Total } \\ 181 \end{gathered}$	0	0	,	T	0	Total 2	0	0	77	0	0	Total 77	263
4:15 PM	0	0	0	0	3	0	0	4	160	0	0	164	0	0	0	2	0	2	0	0	93	1	0	94	260
4:30 PM	0		0	2	0	3	0		161	0	0	164	0	0	0	5	0	5	0	0	98	0	0	98	270
4:45 PM	0	0	0	1	0	1	0	3	185	3	0	191	0	0	0	2	0	2	0	0	110	0	0	110	304
Hourly Total	0	3	0	4	3	7	0	17	679	4	0	700	0	0	0	11	0	11	0	0	378	1	0	379	1097
5:00 PM	0	0	0	0	1	0	0	4	194	1	0	199	0	2	0	0	0	2	0	0	92	0	1	92	293
5:15 PM	0	1	0	0	0	1	0	4	204	0	0	208	0	1	0	2	1	3	0	0	118	2	0	120	332
5:30 PM	0	0	0	0	0	0	0	4	194	0	0	198	0	0	0	3	0	3	0	0	96	1	0	97	298
5:45 PM	-	2	0	1	0	3	0	3	167	1	0	171	0	0	1	3	0	4	0	0	84	0	0	84	262
Hourly Total	0	3	0	1	1	4	0	15	759	2	0	776	0	3	1	8	1	12	0	0	390		1	393	1185
6:00 PM	0	0	1	0	0	1	0	4	168	1	0	173	0	0	0	3	0	3	0	0	77	1	0	78	255
6:15 PM	0	0	0	0	0	0	0	5	150	0	0	155	0	0	0	1	0	1	0	0	67	1	1	68	224
6:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	0	1	0	0	1	0	9	318	1	0	328	0	0	0	4	0	4	0	0	144	2	1	146	479
7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 PM	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	0	,	0	0	0	0	0	0
9:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30 PM	0	0	0	0	0	0	-	0	0	0	0	0	,	0	0	0	,	0	0	0	0	0	0	0	0
10:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
11:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
daily total	0	24	1	9	8	34	1	90	5124	24	0	5239	2	12	6	108	3	128		7	5024	13	2	5045	10446
$\xrightarrow{\text { Cars }}$	0	${ }_{1}^{23}$	1	9	0	33	1	85	${ }^{4845}$	${ }_{1}^{23}$	0	4954	2	${ }^{12}$	${ }^{6}$	103	1	123 5	1	7	4814	${ }^{13}$	${ }^{2}$	${ }_{210}^{4835}$	${ }_{9} 994$
Heavy Vehicles	0	1	0	0	0	1	0	5	279	1	0	${ }_{585}^{285}$	0	0	0	5	1	5	0	0	210	0	0	${ }^{216}$	501
Heavy Vehicle \%	0.00\%	4.17\%	0.00\%	0.00\%	0.00\%	2.94\%	0.00\%	5.56\%	5.44\%	4.17\%	0.00\%	5.44\%	0.00\%	0.00\%	0.00\%	4.63\%	33.33\%	3.91\%	0.00\%	0.00\%	4.18\%	0.00\%	0.00\%	4.16\%	4.80\%

SR 26 and SW/NW 264th St
 Newberry, Florida
 Thursday, June 15, 2023

$\begin{gathered} \text { Total } \\ \text { Vehicles } \\ \text { on Leg } \\ 10191 \end{gathered}$	$\begin{gathered} \text { Vehicles } \\ \text { Entering } \\ \text { Intersection } \\ 5045 \end{gathered}$		Cars	Heavy	Total
			2	0	2
			1	0	1
			7	0	7
			4814	210	5024
	5146		13	0	13

Cars	Heavy	Total		$\begin{array}{\|c} \text { Venicles } \\ \text { Entering } \\ \text { Intersection } \\ 5239 \end{array}$	$\begin{array}{\|c} \text { Total } \\ \text { Vehicles } \\ \text { on Leg } \\ 10396 \\ \hline \end{array}$
23	1	24			
4845	279	5124			
85	5	90			
1	0	1		\pmExiting Intersection	
0	0	0		5157	

APPENDIX B Historical AADT Report

SITE: 0004 - SR 26200 ' W. OF CR 337 (NEWBERRY)									
YEAR	AADT			ON		ION	*K FACTOR	D FACTOR	T FACTOR
2022	11000	C	E	0	W	0	9.50	57.90	5.50
2021	10500	S		0		0	9.50	57.80	5.20
2020	10500	F		0		0	9.50	58.00	5.10
2019	11000	C	E	0	W	0	9.50	58.00	4.40
2018	11000	C	E	0	W	0	9.50	57.90	5.40
2017	11000	C	E	0	W	0	9.50	53.80	3.80
2016	10500	C	E	0	W	0	9.50	53.60	5.60
2015	9600	C	E	0	W	0	9.50	57.00	3.70
2014	9800	C	E		W		9.50	57.40	5.40
2013	8100	C	E	0	W	0	9.50	57.80	4.10
2012	8700	C	E	0	W	0	9.50	58.40	3.30
2011	9600	C	E	0	W	0	9.50	58.80	3.20
2010	9700	C	E	0	W	0	10.13	59.87	4.30
2009	9400	C	E	0	W	0	10.04	57.81	3.80
2008	9400	C	E	0	W	0	10.17	57.73	5.90
2007	9300	C	E	0	W	0	10.22	58.44	5.30

COUNTY: 26 - ALACHUA									
SITE: 0493 - SR 26.1 MI. W. OF SR 45									
YEAR	AADT		DIRECTION 1		DIRECTION 2		*K FACTOR	D FACTOR	T FACTOR
2022	14500	C	E	0	W	0	9.50	57.90	5.50
2021	14500	S		0		0	9.50	57.80	5.20
2020	14500	F		0		0	9.50	58.00	5.10
2019	15000	C	E	0	W	0	9.50	58.00	4.40
2018	15000	C	E	0	W	0	9.50	57.90	5.40
2017	15000	C	E	0	W	0	9.50	53.80	3.80
2016	15000	C	E	0	W	0	9.50	53.60	5.60
2015	13500	C	E	0	W	0	9.50	57.00	3.70
2014	13500	C	E		W		9.50	57.40	5.40
2013	12000	C	E	0	W	0	9.50	57.80	4.10
2012	12500	C	E	0	W	0	9.50	58.40	3.30
2011	13000	C	E	0	W	0	9.50	58.80	3.20
2010	14000	C	E	0	W	0	10.13	59.87	4.30
2009	13500	C	E	0	W	0	10.04	57.81	3.80
2008	14000	C	E	0	W	0	10.17	57.73	5.90
2007	13500	C	E	0	W	0	10.22	58.44	5.30

AADT FLAGS: $C=$ COMPUTED; $E=$ MANUAL ESTIMATE; $F=$ FIRST YEAR ESTIMATE $S=$ SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE $\mathrm{V}=\mathrm{FIFTH}$ YEAR ESTIMATE; $6=$ SIXTH YEAR ESTIMATE; X = UNKNOWN *K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

```
COUNTY: 26 - ALACHUA
```

SITE: 9157 - SW 282ND ST . 1 MI. S. OF SR 26 HPMS)

YEAR	AADT		DIRECTION 1		DIRECTION 2		*K FACTOR	D FACTOR	T FACTOR
2022	1800	C	N	0	S	0	9.50	57.90	2.90
2021	1700	S		0		0	9.50	57.80	3.00
2020	1700	F		0		0	9.50	58.00	2.90
2019	1800	C	N	0	S	0	9.50	58.00	2.60
2018	1900	S		0		0	9.50	57.90	2.70
2017	1900	F		0		0	9.50	53.80	2.60
2016	1800	C	N	0	S	0	9.50	53.60	2.80
2015	1500	R		0		0	9.50	57.00	2.60
2014	1500						9.50	57.40	2.40
2013	1500	S		0		0	9.50	57.80	2.60
2012	1500			0		0	9.50	58.40	2.50
2011	1500	C	N	0	S	0	9.50	58.80	2.80

FLORIDA DEPARTMENT OF TRANSPORTATION
TRANSPORTATION STATISTICS OFFICE
2022 HISTORICAL AADT REPORT
COUNTY: 26 - ALACHUA
SITE: 9123 - SW 46TH AVE. . 1 MI. W. OF CR 241 (HPMS)

YEAR	AADT	DIRECTION 1		DIRECTION 2		*K FACTOR	D FACTOR	T FACTOR
2022	1200 T		0		0	9.50	57.90	2.90
2021	1200 S		0		0	9.50	57.80	3.00
2020	1200 F		0		0	9.50	58.00	2.90
2019	1200 C	E	0	W	0	9.50	58.00	2.60
2018	1400 R		0		0	9.50	57.90	2.70
2017	1400 T		0		0	9.50	53.80	2.60
2016	1300 S		0		0	9.50	53.60	2.80
2015	1200 F		0		0	9.50	57.00	2.60
2014	1200 C	E		W		9.50	57.40	2.40
2013	750 S		0		0	9.50	57.80	2.60
2012	750 F		0		0	9.50	58.40	2.50
2011	750 C	E	0	W	0	9.50	58.80	2.80

AADT FLAGS: $C=$ COMPUTED; $E=$ MANUAL ESTIMATE; $F=$ FIRST YEAR ESTIMATE $S=$ SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE $\mathrm{V}=\mathrm{FIFTH}$ YEAR ESTIMATE; $6=$ SIXTH YEAR ESTIMATE; X = UNKNOWN *K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

APPENDIX C Trend Analysis Output

Traffic Trends - V03.a
SR 26 -- 200' W of CR 337 (Newberry)

FIN\#	1234
Location	1

County:	Alachua (26)
Station \#:	4
Highway:	SR 26

	${ }^{* *}$ Annual Trend Increase:	224
Trend R-squared:	54.16%	
Trend Annual Historic Growth Rate:	2.42%	
Trend Growth Rate (2022 to Design Year):	3.02%	
Printed:	$21-J u n-23$	
Straight Line Growth Option		

*Axle-Adjusted

Traffic Trends - V03.a
SR 26 -- . 1 Mi W of SR 45

FIN\#	1234
Location	1

County:	Alachua (26)
Station \#:	0493
Highway:	SR 26

** Annual Trend Increase:	209
Trend R-squared:	41.82\%
Trend Annual Historic Growth Rate:	1.50\%
Trend Growth Rate (2022 to Design Year):	2.07\%
Printed:	21-Jun-23
Straight Line Growth Option	

Year	Traffic (ADT/AADT)	
	Count*	Trend**
2013	12000	13300
2014	13500	13500
2015	13500	13700
2016	15000	13900
2017	15000	14100
2018	15000	14400
2019	15000	14600
2020	14500	14800
2021	14500	15000
2022	14500	15200
2025 Opening Year Trend		
2025	N/A	15800
2030 Mid-Year Trend		
2030	N/A	16900
2035 Design Year Trend		
2035	N/A	17900
TRANPLAN Forecasts/Trends		

*Axle-Adjusted

Traffic Trends - V03.a
CR 337 -- 1 Mi S of SR 26

FIN\#	1234
Location	1

County:	Alachua (26)
Station \#:	9157
Highway:	CR 337

	${ }^{* *}$ Annual Trend Increase:	31
Trend R-squared:	34.42%	
Trend Annual Historic Growth Rate:	1.56%	
Trend Growth Rate (2022 to Design Year):	2.71%	
Printed:	$21-$ Jun-23	
Straight Line Growth Option		

Year	Traffic (ADT/AADT)	
	Count*	Trend**
2013	1500	1600
2014	1500	1600
2015	1500	1600
2016	1800	1700
2017	1900	1700
2018	1900	1700
2019	1800	1800
2020	1700	1800
2021	1700	1800
2022	1800	1800
2025 Opening Year Trend		
2025	N/A	1900
2030 Mid-Year Trend		
2030	N/A	2100
2035 Design Year Trend		
2035	N/A	2300
TRANPLAN Forecasts/Trends		

*Axle-Adjusted

Traffic Trends - V03.a SW 46th Ave -- 1 Mi W of CR 241 (HPMS)

County:	Alachua (26)
Station \#:	9123
Highway:	SW 46th Ave

Year	Traffic (ADT/AADT)	
	Count*	Trend**
2013	800	1100
2014	1200	1100
2015	1200	1200
2016	1300	1200
2017	1400	1200
2018	1400	1200
2019	1200	1200
2020	1200	1300
2021	1200	1300
2022	1200	1300
2025 Opening Year Trend		
2025	N/A	1400
2030 Mid-Year Trend		
2030	N/A	1500
2035 Design Year Trend		
2035	N/A	1600
TRANPLAN Forecasts/Trends		

*Axle-Adjusted

APPENDIX D Crash Summary

APPENDIX E Crash Modification Factors

CRASH MODIFICATION FACTORS CLEARINGHOUSE

CMF / CRF Details

CMF ID: 9289
CMF Name: Resurface pavement

Description:

Prior Condition: No Prior Condition(s)

Category: Roadway

Study ID: Time series trends of the safety effects of pavement resurfacing, Park et al. 2017

	Star Quality Rating
Star Quality Rating:	4 Stars
	Crash Modification Factor (CMF)
Value:	0.929
Adjusted Standard Error:	
Unadjusted Standard Error:	0.04

		Crash Reduction Factor
Value:	7.1	
Adjusted Standard Error:		
Unadjusted Standard Error:	4	

Applicability

Crash Type:	All
Crash Severity:	All
Roadway Types:	Principal Arterial Other
Minimum Number of Lanes:	1
Maximum Number of Lanes:	4
Number of Lanes Direction:	
Number of Lanes Comment:	
Road Division Type:	
Minimum Speed Limit:	25
Maximum Speed Limit:	65
Speed Unit:	mph
Speed Limit Comment:	
Area Type:	Urban
Traffic Volume:	Minimum of 2100 to Maximum of 40500 Annual Average Daily Traffic (AADT)
Average Traffic Volume:	
Time of Day:	Not specified
	If countermeasure is intersection-based.
Intersection Type:	
Intersection Geometry:	
Traffic Control:	
Major Road Traffic Volume:	
Minor Road Traffic Volume:	

Average Major Road Volume:

Average Minor Road Volume:

Development Details

| Date Range of Data Used: | 2004 to 2013 |
| ---: | :--- | :--- |
| State: | FL |
| Country: | USA |
| Type of Methodology Used: | Before/after using comparison group |
| Sample Size (crashes): | 1157 crashes before, 1158 crashes after |
| Sample Size (sites): | 195 sites before, 195 sites after |
| Sample Size (miles): | 115.443 miles before |

Other Details

| Included in HSM: | No |
| ---: | :--- | :--- |
| Date Added to Clearinghouse: | Jun 17, 2018 |
| Comments: | |
| | |

[^1]CRASH MODIFICATION FACTORS CLEARINGHOUSE

CMF / CRF Details

CMF ID: 3
CMF Name: Increase lane width from 11 feet to 12 feet

Description:

Prior Condition: No Prior Condition(s)

Category: Roadway
Study ID: Lane Width and Safety, Hauer, E. 2000

| | Star Quality Rating |
| ---: | :--- | :--- |
| Star Quality Rating: | 4 Stars |
| | |
| | Crash Modification Factor (CMF) |
| Value: | 0.95 |
| Adjusted Standard Error: | 0.32 |
| Unadjusted Standard Error: | 0.11 |
| Value: | 5 |
| Adjusted Standard Error: | 32 |
| Unadjusted Standard Error: | 11 |

Applicability

Crash Type:	All
Crash Severity:	All
Roadway Types:	Not specified
Minimum Number of Lanes:	2
Maximum Number of Lanes:	2
Number of Lanes Direction:	
Number of Lanes Comment:	
Road Division Type:	
Minimum Speed Limit:	
Maximum Speed Limit:	
Speed Unit:	
Speed Limit Comment:	
Area Type:	Rural
Traffic Volume:	
Average Traffic Volume:	
Time of Day:	
	If countermeasure is intersection-based.
Intersection Type:	
Intersection Geometry:	
Traffic Control:	
Major Road Traffic Volume:	
Minor Road Traffic Volume:	

Average Major Road Volume:

Average Minor Road Volume:

Development Details

| Date Range of Data Used: | |
| ---: | :--- | :--- |
| Municipality: | |
| State: | |
| Country: | |
| Type of Methodology Used: | Meta-analysis |

	Other Details
Included in HSM:	No
Date Added to Clearinghouse:	Dec 01, 2009
Comments:	

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

CMF / CRF Details

CMF ID: 10550
CMF Name: Convert minor-road stop control to all-way stop control

Description:

Prior Condition: Intersections with stops signs on minor approaches
Category: Intersection traffic control
Study ID: Estimate of the Safety Effect of All-Way Stop Control Conversion in Washington, DC, Deng et al. 2020

	Star Quality Rating
Star Quality Rating:	4 Stars
	Crash Modification Factor (CMF)
Value:	1.03
Adjusted Standard Error:	
Unadjusted Standard Error:	

		Crash Reduction Factor
Value:	-3	
Adjusted Standard Error:		
Unadjusted Standard Error:		

Applicability

Crash Type:	Rear end
Crash Severity:	All
Roadway Types:	Not specified
Minimum Number of Lanes:	
Maximum Number of Lanes:	
Number of Lanes Direction:	
Number of Lanes Comment:	
Road Division Type:	
Minimum Speed Limit:	
Maximum Speed Limit:	
Speed Unit:	
Speed Limit Comment:	
Area Type:	Not specified
Traffic Volume:	
Average Traffic Volume:	
Time of Day:	Not specified
	If countermeasure is intersection-based.
Intersection Type:	Roadway/roadway (not interchange related)
Intersection Geometry:	3-leg,4-leg
Traffic Control:	Stop-controlled
Major Road Traffic Volume:	
Minor Road Traffic Volume:	

Average Major Road Volume:

Average Minor Road Volume:

Development Details

| Date Range of Data Used: | 2009 to 2016 |
| ---: | :--- | :--- |
| Municipality: | |
| State: | DC |
| Country: | |
| Type of Methodology Used: | Before/after using comparison group |
| Sample Size (sites): | 53 sites before, 53 sites after |
| Sample Size (site-years): | site-years before, 159 site-years after |

Other Details

Included in HSM:	No
Date Added to Clearinghouse:	Dec 17, 2020
Comments:	

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S.
Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

CRASH MODIFICATION FACTORS CLEARINGHOUSE

CMF / CRF Details

CMF ID: 2826

CMF Name: Flatten horizontal curve

Description:

Prior Condition: curve with smaller radius

Category: Alignment

Study ID: Benefit-Cost Analysis of In-Vehicle Technologies and Infrastructure Modifications as a Means to Prevent Crashes Along Curves and Shoulders, Pitale et al. 2009

	Star Quality Rating
Star Quality Rating:	1 Star
	Crash Modification Factor (CMF)
Value:	0.33
Adjusted Standard Error:	
Unadjusted Standard Error:	0.32

	Crash Reduction Factor
Value:	67
Adjusted Standard Error:	
Unadjusted Standard Error:	32.1

Applicability	
Crash Type:	All
Crash Severity:	All
Roadway Types:	Principal Arterial Other
Minimum Number of Lanes:	2
Maximum Number of Lanes:	2
Number of Lanes Direction:	
Number of Lanes Comment:	
Road Division Type:	
Minimum Speed Limit:	
Maximum Speed Limit:	
Speed Unit:	
Speed Limit Comment:	
Area Type:	
Traffic Volume:	
Average Traffic Volume:	
Time of Day:	All
	If countermeasure is intersection-based.
Intersection Type:	
Intersection Geometry:	
Traffic Control:	
Major Road Traffic Volume:	
Minor Road Traffic Volume:	

Average Major Road Volume:

Average Minor Road Volume:

Development Details

| Date Range of Data Used: | |
| ---: | :--- | :--- |
| Municipality: | |
| State: | MN |
| Country: | USA |
| Type of Methodology Used: | Simple before/after |
| Sample Size (crashes): | 2 crashes before, 3 crashes after |

Other Details

Included in HSM:	No
Date Added to Clearinghouse:	Mar 21, 2011
Comments:	For 4 curves.

[^2]
Crash Modification Factors (CMFs)

Introduction

Local and rural road owners often have limited financial resources available to implement highway safety improvements. Therefore, it is important that safety improvements return the highest level of benefit for each dollar invested. A primary benefit of safety improvements is to reduce crashes and fatalities, so it is useful for local and rural road owners to understand how much a particular safety improvement, or set of safety improvements, can reduce crashes. Published resources are available to assist local and rural road owners in understanding the crash reduction potential associated with specific safety improvements. This briefing sheet describes these resources and provides an example of how a crash modification factor can be used to assess the safety impact of a set of improvements.

Developing CMFs

Highway safety professionals have conducted numerous studies measuring the crash reduction potential of various types of safety improvements. Many of these estimates have been developed by comparing crashes "before" implementation of a safety improvement against crashes "after" implementation. The measured change in crashes is used to develop a "crash modification factor," or CMF. A CMF is a multiplicative factor used to compute the expected number of crashes after implementing a given countermeasure at a specific site.

While some experience and judgment is required to develop and apply CMFs, the information derived from their proper application can benefit local and rural road owners in selecting safety improvements or "countermeasures" by providing a basis to understand how crashes are affected by a particular safety improvement or set of improvements.

Resources

Application of CMFs requires an appreciation of their sources and limitations. The CMF Clearinghouse ${ }^{1}$ contains over 3,000 CMFs, each developed through one or more safety studies. The Clearinghouse provides a searchable database for CMFs and accompanying background information on each. The practitioner can use the search tools available with the Clearinghouse to find the CMFs that match the facility where they have a safety need; e.g., intersections or roadway segments. Each CMF has a "star rating" indicating the quality or confidence in the results of the study producing the CMF. A higher number of stars indicate a better rating, with five stars representing the best quality of research for the CMF. Each CMF will have an accompanying study along with the countermeasure's impact on crash severity, crash types, and where the countermeasure was deployed (e.g., rural or urban area).

The Highway Safety Manual (HSM), published in 2010, provides practitioners with information and tools to consider safety when making decisions concerning the design and operation of roadways. The CMFs used in the HSM are considered the "best of the best" at the time of publication. This tool can help practitioners evaluate alternatives and determine expected impacts on roadway safety. Two chapters in Part C Predictive Method are specific to rural roadways. Chapter 10 provides a methodology to analyze rural two-lane roadways, and chapter 11 is about rural multilane highways. It is important to note the current HSM pertains to only paved roadways.

Estimating Countermeasure Benefits

The Highway Safety Manual and CMF Clearinghouse also provide directions for how to calculate the combined effects of applying multiple safety improvements. In these cases, the CMFs are typically multiplied to estimate the combined effect of independent countermeasures such as adding pedestrian signals and left-turn lane at a signalized intersection. The HSM recommends that practitioners multiply no more than 3 CMFs to estimate the combined effect of multiple safety improvements. Practitioners are cautioned about multiplying CMFs for countermeasures targeting the same crash type, such as using chevrons and widened shoulders at a curve to reduce roadway departure crashes. This practice can overestimate the benefits of combined treatments. In this case, caution and engineering judgment should be exercised. ${ }^{2}$

While the number of CMFs for newer or more innovative safety improvements is limited, the CMF Clearinghouse can provide local and rural road managers with a good start in compiling benefits and comparing the relative effectiveness of potential improvements.

Local and rural road operators can gain an understanding of safety treatment effectiveness by comparing CMFs for countermeasures that reduce the occurrence of the same crash type. For example, the table below presents a series of safety countermeasures to treat run-off-the-road crashes, a frequent challenge on two-lane local and rural roads, by increasing cost.

CMFs for Selected Run-Off-The-Road Crash Countermeasures

Countermeasure	CMF	Cost	Reference
Install Advance Curve Warning Signs	0.70	Low	R. Elvik, and T. Vaa, "Handbook of Road Safety Measures," Oxford, United Kingdom, Elsevier (2004).
Provide Road Delineation Signing	0.65	Low	A. Montella, "Safety Evaluation of Curve Delineation Improvements An Empirical Bayes Observational Before-After Study," TRB 88th Annual Meeting Compendium of Papers CD-ROM, Washington, DC: TRB, 2009).
Install Edge Line	0.62 to Striping	Low to	X. Sun and S. Das, "Safety Improvement from Edge Lines on Rural Two-Lane Highways," Louisiana Department of Transportation and
Install Edge Line	0.56	0.90 to	Low to
Rumble Strips	0.78	Moderate	D.J. Torbic, J.M. Hutton, C.D. Bokenkroger, et al. NCHRP Report 641: Guidance for the Design and Application of Shoulder and Centerline Rumble Strips, National Cooperative Highway Research Program (Washington DC: TRB, 2009).
Widen Shoulders	0.98	Low to	Moderate
K. Haleem, A. Gan, and J. Lu. "Using multivariate adaptive regression splines (MARS) to develop crash modification factors for urban freeway interchange influence areas," Accident Analysis and Prevention 55			

Countermeasure	CMF	Cost	Reference
Remove or Shield Roadside Obstacles	0.62	Low to Moderate	P.W. Hovey and M. Chowdhury, Development of Crash Reduction Factors, 14801(0), Ohio Department of Transportation, (2005).
Flatten Horizontal Curve	0.33	High	Pitale, J.T., Shankwitz, C., Preston, H., and Barry, M., Benefit-Cost Analysis of In-Vehicle Technologies and Infrastructgure Modifications as a Means to Prevent Crashes Along Curves and Shoulders, Minnesota Department of Transportation, (2009).

Source: Federal Highway Administration, "Crash Modification Factors (CMF) Clearinghouse." Available online at: www.cmfclearinghouse.org.

As presented in this table, the installation of advance curve warning signs has a CMF of 0.70 . By applying this treatment to horizontal curves along a two-lane rural road experiencing an average of ten horizontal curve/run-off-the-road crashes per year, one can expect seven horizontal curve/run-off-the-road crashes per year following the implementation of the countermeasure ($10 \times 0.70=7$). In other words, crashes can be reduced by 30 percent. Conversely, widening shoulders, a more costly countermeasure, would result in a more modest reduction in crashes. Based on this knowledge, and supplemented with experienced application of CMFs, local and rural road agencies can quickly understand the potential safety benefits from applying a range of safety treatments.

Crash Modification Factor Example:

Average Crashes (after CM implementation) - (CMF x Avg. Crashes (Before CM Implementation)) = Crash Reduction

Adding Advance Warning Signs at Curves

$10-(0.7 \times 10$ crashes/year) $=3$ crashes per year reduced

Some CMFs apply to the average of all crashes on a roadway segment or intersection, while others may apply to crashes based on severity, such as fatal or injury crashes. This allows agencies to rank the benefits of countermeasures based on the severity of the crashes that can be prevented and to target more severe crashes in a road safety strategy.

Local and rural road owners are sometimes able to fund highly effective, lower-cost projects using local funds more quickly than they can fund more effective but perhaps considerably more costly projects. Reviewing CMFs, along with implementation costs, provides local and rural road owners with an opportunity to understand the benefit/cost (B/C) ratio of different countermeasures before undertaking a more detailed assessment. As shown in the table above, a local road owner could choose to implement a lower cost option, such as signing or striping, as a first step in improvement while perhaps waiting for State or Federal funding for more costly strategies that may be have greater long-term effectiveness.

Resources

American Association of State Highway and Transportation Officials, Highway Safety Manual. Available at: http://www.highwaysafetymanual.org/

Federal Highway Administration, Introduction to Crash Modification Factors, FHWA-SA-13-015 (Washington, DC: 2013).
Available at: http://safety.fhwa.dot.gov/tools/crf/resources/cmfs/intro.cfm

Federal Highway Administration, "Crash Modification Factors (CMF) Clearinghouse" web page. Available at: www.cmfclearinghouse.org

Federal Highway Administration, "Crash Modification Factors in Practice" web page. Available at: http://safety.fhwa.dot.gov/tools/crf/resources/cmfs/

F. Gross and K. Yunk, "Using CRFs to Improve Highway Safety," Public Roads, May/June (2009): 26-31. Available at: http://www.fhwa.dot.gov/publications/publicroads/09june/04.cfm

[^3]
APPENDIX F Cost Estimation

engineer's estimate of probable cost - CR 337
Option 1 - Widen to 11ft Lanes (No Shoulder)

APPENDIX G

Traffic Impact Analysis Report

TRAFFIC IMPACT STUDY

Westone
 Newberry, Florida

April 10, 2023

prepared for:
 City of Newberry
 and
 Florida DOT District 2

submitted on behalf of:
 JBPro

prepared by:

PROFESSIONAL ENGINEER ENDORSEMENT

I hereby certify that I am a Registered Professional Engineer in the State of Florida and currently practicing as the principal of Hagen Consulting Services, LLC.

Hagen Consulting Services, LLC is authorized via Registry No: 27955 to operate as an Engineering Business by the Florida Board of Professional Engineers, State of Florida, Department of Professional Regulation.

I have prepared or supervised the preparation of the evaluation, findings, conclusions, recommendations, and professional opinions/advice contained in this document. My endorsement constitutes my approval of these items.

PROJECT: Westone
LOCATION: Newberry, Florida - Alachua County
CLIENT: JBPro
The results contained in this report were developed using procedures and references standard to the transportation engineering practice. These references and procedures were applied using professional judgment and experience.

Name: Lawrence T. Hagen, P.E., PTOE, RSP
Florida P.E. No.: 43968

This item has been digitally signed and sealed by Lawrence T. Hagen on the date adjacent to the seal.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

TABLE OF CONTENTS

INTRODUCTION 3
EXISTING CONDITIONS 5
TRIP GENERATION 6
SCHEDULE OF DEVELOPMENT 7
TRIP DISTRIBUTION 8
INTERSECTION LEVEL OF SERVICE (LOS) ANALYSIS 11
CONCLUSIONS AND RECOMMENDATIONS 13
APPENDIX A: SITE PLAN
APPENDIX B: TRAFFIC COUNTS
APPENDIX C: SEASONAL ADJUSTMENT
APPENDIX D: HIGHWAY CAPACITY ANALYSES
LIST OF FIGURES AND TABLES
FIGURES
Figure 1 - Project Location Map 3
Figure 2 - PM Peak Hour Project Trip Distribution - Phase 1 8
Figure 3 - PM Peak Hour Project Trip Distribution - Phase 2 9
Figure 4 - PM Peak Hour Project Trip Distribution - Phase 3 10

TABLES

Table 1 - Trip Generation Single-Family Detached Housing 6
Table 2 - Trip Generation Single-Family Attached Housing 6
Table 3 - Trip Generation Total for Westone 6
Table 4 - Trip Generation - PM Peak Hour Phase 1 7
Table 5 - Trip Generation - PM Peak Hour Phase 2 7
Table 6 - Trip Generation - PM Peak Hour Phase 3 7
Table 7 - Traffic Volumes for Capacity Analysis 11
Table 8 - Highway Capacity Analysis Results 12

INTRODUCTION

Hagen Consulting Services, LLC is assisting JBPro with the transportation impacts for the proposed new Westone residential development. Westone is planned to contain a total of 850 single-family residential units. The preliminary plan is for a total of 681 detached single-family homes, and 169 townhouse attached single-family homes. Westone is located west of the City of Newberry in Alachua County, Florida. Access to the development will be provided primarily via State Road 26 (Newberry Road) and SW 266 ${ }^{\text {th }}$ Street (County Road 337). State Road 26 in the vicinity of the site is a two-lane undivided rural crosssection and is functionally classified as a rural principal arterial other with an FDOT access management classification of 3 and a posted speed limit of 60 mph west of the site. The speed limit drops to 50 mph just west of the proposed connection to SR 26 and drops to 40 west of SW $266^{\text {th }}$ Street. The site is currently vacant and partially wooded. The project location is shown in Figure 1 below.

Figure 1-Project Location Map
The preliminary site plan for the proposed Westone single-family home development is included in Appendix A.

The $11^{\text {th }}$ Edition of the Institute of Transportation Engineers (ITE) Trip Generation is the recognized authoritative source for estimating the trips generated by developments such as the proposed residential development. According to Trip Generation, a residential development such as proposed here falls under ITE Land Use Code 210 - Single-Family Detached Housing and ITE Land Use Code 215 - Single-Family Attached Housing. The assessment of the traffic impacts of the proposed residential housing development will be based on the impacts to traffic in the PM peak hour period.

The traffic impacts of the proposed development will be based on a Highway Capacity Software analysis of the operation of the intersections adjoining the site both with and without the traffic generated by the development. A comparison of the delay and Level Of Service (LOS) with and without the project traffic will serve as the basis of the analysis.

EXISTING CONDITIONS

State Road 26 is a state-maintained roadway (Roadway ID 26070000) that runs in a predominantly West to East orientation in the vicinity of the project site. It is functionally classified as a rural principal arterial other and has an FDOT access management classification of 3 . The typical cross-section is two-lane undivided rural section with paved shoulders and open drainage with grass ditches. There are no existing marked bike lanes or sidewalks on either side of the roadway. There are existing 4-foot-wide paved shoulders. As indicated above, the current posted speed limit in the vicinity of the where the Westone development's traffic will access State Road 26 is 50 mph . West of the access connection the speed limit raises to 60 mph and to the East it drops to 40 mph as it approaches NW $266^{\text {th }}$ Street. As SR 26 approaches SW $266^{\text {th }}$ Street a left turn bay exists to the West of the intersection and left turn and right turn lanes exist on the East side of the intersection. The intersection with NW $266^{\text {th }}$ Street is at mile post 2.035 according to FDOT's straight line diagram for the roadway.

According to data from Florida Traffic Online, the segment of State Road 26 west of SW $266^{\text {th }}$ Street has an AADT of 10,500 . The segment of State Road 26 east of SW $266^{\text {th }}$ Street has an AADT of 14,500 . SW $266^{\text {th }}$ Street south of State Road 26 has an AADT of 1,700 vehicles per day.

Existing turning movement count data at the intersection of SR 26 at SW $266^{\text {th }}$ Street were collected on Thursday, December 8, 2022. Four hours of traffic data were collected, from 7 AM to 9 AM and from 4 PM to 6 PM. The traffic count data is included in Appendix B.

TRIP GENERATION

The Institute of Transportation Engineers (ITE) Trip Generation $11^{\text {th }}$ Edition was used to calculate the project trip estimates for the new land use at the project site. Trip generation estimates are shown in terms of daily traffic, as well as the AM and PM peak hours. The proposed Westone development falls under ITE Land Use Code 210 - Single-Family Detached Housing and ITE Land Use Code 215 - Single-Family Attached Housing. The total trip generation information for the proposed residential development is shown in Table 1, Table 2, and Table 3 below.

TABLE 1: Trip Generation Single-Family Detached Housing - ITE Land Use 210-681 Units

		Distribution		Trips			
Period	ITE Equation	Units	Trips	\% In	\% Out	In	Out
Weekday	$\operatorname{Ln}(T)=0.92 \operatorname{Ln}(X)+2.68$	681	5,894	50%	50%	2,947	2,947
AM Peak	$\operatorname{Ln}(T)=0.91 \operatorname{Ln}(X)+0.12$	681	427	26%	74%	111	316
PM Peak	$\operatorname{Ln}(T)=0.94 \operatorname{Ln}(X)+0.27$	681	603	63%	37%	380	223

Source: ITE 11th Edition of Trip Generation - Units: \# of dwelling units

TABLE 2: Trip Generation Single-Family Attached Housing - ITE Land Use 215-169 Units

		Distribution		Trips			
Period	ITE Equation	Units	Trips	\% In	\% Out	In	Out
Weekday	$\mathrm{T}=7.62(\mathrm{X})-50.48$	169	1,237	50%	50%	619	619
AM Peak	$\mathrm{T}=0.52(\mathrm{X})-5.70$	169	82	25%	75%	21	62
PM Peak	$\mathrm{T}=0.60(\mathrm{X})-3.93$	169	97	59%	41%	58	40

Source: ITE 11th Edition of Trip Generation - Units: \# of dwelling units

TABLE 3: Trip Generation Total Trip Generation for Westone

	Trips		
Period	In	Out	Total
Weekday	3,566	3,566	7,131
AM Peak	132	378	509
PM Peak	437	263	700

SCHEDULE OF DEVELOPMENT

The proposed Westone development consists of three phases. For this preliminary analysis, we will presume that construction will begin in 2023 with the first phase being open in 2025. The subsequent phases will be assumed to be completed in five-year increments.

For the purposes of this analysis, we will just be considering the PM Peak Hour traffic volumes. Due to the non-linear nature of the trip generation equation for the single-family detached housing land use, the trip generation numbers are not simply additive for each phase, so the cumulative impacts of each of the phases must be tabulated and assessed. The PM Peak Hour trip generation for each phase of the development is shown in Table 4, Table 5, and Table 6 below.

TABLE 4: Trip Generation - PM Peak Hour Phase 1

				Distribution		Trips	
Land Use	ITE Equation	Units	Trips	\% In	\% Out	In	Out
Single-Family Detached	$\operatorname{Ln}(\mathrm{T})=0.94 \operatorname{Ln}(\mathrm{X})+0.27$	173	166	63\%	37\%	105	62
Single-Family Attached	$\mathrm{T}=0.60(\mathrm{X})-3.93$	169	97	59\%	41\%	58	40

TABLE 5: Trip Generation - PM Peak Hour Phase 2

				Distribution		Trips	
Land Use	ITE Equation	Units	Trips	\% In	\% Out	In	Out
Single-Family Detached	$\operatorname{Ln}(\mathrm{T})=0.94 \operatorname{Ln}(\mathrm{X})+0.27$	423	385	63%	37%	243	143
Single-Family Attached	$\mathrm{T}=0.60(\mathrm{X})-3.93$	169	97	59%	41%	58	40

TABLE 6: Trip Generation - PM Peak Hour Phase 3

				Distribution		Trips	
Land Use	ITE Equation	Units	Trips	\% In	\% Out	In	Out
Single-Family Detached	$\operatorname{Ln}(\mathrm{T})=0.94 \operatorname{Ln}(\mathrm{X})+0.27$	681	603	63\%	37\%	380	223
Single-Family Attached	$\mathrm{T}=0.60$ (X) - 3.93	169	97	59\%	41\%	58	40
					Total	437	263

TRIP DISTRIBUTION

The distribution of peak period project trips on the roadway network is typically a manual assignment derived from the peak period traffic data collected on the adjacent roadway and a review of existing locations of interacting land-uses. The distribution is based on engineering judgment of the expected routes that patrons would take to / from the proposed development. Since the Westone development will be developed in three phases, the trip distribution must be done on a phase-by-phase basis.

For Phase 1 of the development, just the portions of the property adjacent to SW $266^{\text {th }}$ Street will be developed. This includes all of the 169 attached housing units for Westone and 173 of the detached housing units. Due to the very rural nature of the surrounding lands to the south and west of the project, the majority of traffic is presumed to be to/from the north on SW $266^{\text {th }}$ Street and then to/from the east on State Road 26 towards Newberry. A small portion of traffic is also assigned to SW $15^{\text {th }}$ Avenue. The PM Peak Hour Project Trip Distribution for Phase 1 is shown in Figure 2 below.

Figure 2 - PM Peak Hour Project Trip Distribution - Phase 1

For Phase 2 of Westone the project expands to the west, and a new roadway connecting to State Road 26 is constructed. It is presumed that the majority of the homes added in Phase 2 of the project will utilize the new connection onto W Newberry Road (State Road 26). Again, some traffic is assigned to SW $15^{\text {th }}$ Avenue, which provides access to the Newberry Elementary School and to US 41 to the east for destinations further east and south. The PM Peak Hour Project Trip Distribution for Phase 2 is shown in Figure 3 below:

Figure 3 - PM Peak Hour Project Trip Distribution - Phase 2

Similarly, for Phase 3 of the development, parcels of land in the SW corner of the property will be developed with an additional 258 single-family detached homes. It is presumed that the majority of these trips also will primarily use the newer constructed access to W Newberry Road (State Road 26). The PM Peak Hour Project Trip Distribution for Phase 3, and the ultimate Project Trip Distribution for the Westone project is shown in Figure 4 which can be found on the following page:

Figure 4 - PM Peak Hour Project Trip Distribution - Phase 3

INTERSECTION LEVEL OF SERVICE (LOS) ANALYSIS

The roadway Level Of Service (LOS) analysis is conducted using the procedures outlined in the Transportation Research Board's Highway Capacity Manual (HCM). The HCM procedures represent the state-of-the-practice for the analysis of transportation facilities. In the early stages of the Westone development, it is presumed that the intersection of W Newberry Road and SW $266^{\text {th }}$ Street can continue to operate as a two-way STOPcontrolled intersection.

In order to assess the intersection LOS and operational efficiency, existing turning movement count data was collected at the intersection of W Newberry Road and SW $266^{\text {th }}$ Street on Thursday, December 8, 2022. These raw counts were than multiplied by a seasonal adjustment factor from the Florida DOT Peak Season Factor Category report for Alachua County to convert to AADT-type counts. The numbers were then multiplied by a compounding 2% growth rate to convert to 2025 counts for analysis. The Highway Capacity analysis is then performed on 2025 traffic with and without Phase 1 of Westone. The development of the traffic volumes for the Highway Capacity analysis is shown in Table 7 below. In the table, the rows present the data as follows:

- 2022 represents the raw PM Peak Hour turning movement counts
- Seasonal adds the seasonal adjustment factor
- 2023 adds one year of growth and represents the current background traffic
- 2025 adds two years of background traffic growth - this is the no-build case
- Project represent the project trips assigned to the intersection
- Phase 1 adds the Project trips to the 2025 traffic - this is the build case

TABLE 7: Traffic Volumes for Capacity Analysis - Phase 1

	Eastbound			Westbound			Northbound			Southbound		
	L	T	R	L	T	R	L	T	R	L	T	R
2022	1	385	11	72	609	28	16	1	36	9	4	5
Seasonal	1	389	11	73	615	28	16	1	36	9	4	5
2023	1	397	11	74	627	29	16	1	37	9	4	5
2025	1	413	12	77	653	30	17	1	39	10	4	5
Project				146					92			
Phase 1	1	413	12	223	653	30	17	1	131	10	4	5

Analysis beyond Phase 1 of the project has not been performed. The Florida DOT has a planned project for the widening of State Road 26 from Gilchrist County to County Road 26A east if Newberry that is scheduled for construction in 2027. This will totally alter the roadway network prior to Phase 2 and Phase 3 of the Westone project. The results of the Highway Capacity analyses are included in the appendix and are summarized in Table 8 below:

TABLE 8: Highway Capacity Analysis Results

	EB Left		WB Left		NB		SB	
	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
No-Build	9.1	A	8.5	A	21.8	C	31.5	D
Phase 1	9.1	A	9.1	A	28.8	D	74.5	F

The results of the Highway Capacity analysis shows that even with the addition of the traffic from Phase 1 of the development, the westbound left turn will continue to operate at LOS A. The westbound left turn shows a $95^{\text {th }}$ percentile queue length of less than one vehicle, indicating that the existing left turn lane will continue to perform well even under the Phase 1 volume levels. The northbound approach degrades to LOS D, but it is important to recognize that 131 of the 149 vehicles on that approach will be making right turns, and will be moving relatively easily onto Newberry Road. The v/c ratio for that movement is still only 0.51 and the $95^{\text {th }}$ percentile queue length is 2.7 vehicles. Similarly, the southbound approach degrades to LOS F, however it is important to realize that the volume for this minor approach is only 19 vehicles in the peak hour, and the $95^{\text {th }}$ percentile queue is just 1.0 vehicles. It also is important to remember that the Highway Capacity Two-Way STOPControlled Intersection Analysis procedures are known to be conservative and tend to overestimate the delay of the minor street approaches. Additionally, FDOT's planned improvement to State Road 26 will certainly include improvements to the intersection that will alleviate any operational issues when constructed.

CONCLUSIONS AND RECOMMENDATIONS

Based on the foregoing data and analysis provided, the following conclusions and recommendations are offered:

Conclusions:

- The proposed Westone residential development, when fully constructed is estimated to generate 7,131 daily trips, with 509 trips in the AM Peak Hour and 700 trips in the PM Peak Hour.
- The initial phase of the development can operate adequately with the STOPcontrolled intersection at W Newberry Road and SW 266 ${ }^{\text {th }}$ Street serving Westone.
- Florida DOT has a planned widening project for State Road 26 that will widen and improve the roadway prior to Phase 2 or Phase 3 of Westone.

Recommendation:

- Provide preliminary approval for the Westone project to move forward.
- Additional analyses of traffic impacts of Phase 2 and Phase 3 will be needed once the details of the planned Florida DOT widening project are known.

APPENDIX A: SITE PLAN

APPENDIX B: TRAFFIC COUNTS

All Classes (Lights and Motorcycles, Heavy)
All Movements
ID: 1022794, Location: 29.645896, -82.623066, Site Code: Newberry Rd \& NW 266th
Provided by: Hagen Consulting Services
361 Strawder Road,
Ray City, GA, 31645, US

Leg Direction	W Newberry Road Eastbound			W Newberry Road Westbound					NW 266th Street Northbound					NW 266th Street Southbound					
Time	L T	R	U App	L	T	R	U	App	L	T	R	U	App	L	T	R	U	App	Int
2022-12-08 7:00AM	1162	5	$0 \quad 168$	5	48	2	0	55	3	0	13	0	16	2	0	1	0	3	242
7:15AM	1159	10	$0 \quad 170$	9	47	0	0	56	2	0	12	0	14	5	2	1	0	8	248
7:30AM	0115	5	$0 \quad 120$	7	62	7	0	76	5	0	20	0	25	0	1	3	0	4	225
7:45AM	$1 \quad 134$	2	$0 \quad 137$	11	54	1	0	66	3	0	11	0	14	2	0	1	0	3	220
Hourly Total	3570	22	$0 \quad 595$	32	211	10	0	253	13	0	56	0	69	9	3	6	0	18	935
8:00AM	$0 \quad 119$	0	$0 \quad 119$	6	61	2	0	69	4	0	15	0	19	4	0	1	0	5	212
8:15AM	1134	2	$0 \quad 137$	8	73	2	0	83	0	1	13	0	14	2	0	0	0	2	236
8:30AM	0117	4	$0 \quad 121$	10	62	3	0	75	1	0	15	0	16	1	1	0	0	2	214
8:45AM	$1 \quad 97$	3	$0 \quad 101$	6	48	1	0	55	1	1	16	0	18	5	0	0	0	5	179
Hourly Total	2467	9	$0 \quad 478$	30	244	8	0	282	6	2	59	0	67	12	1	1	0	14	841
4:00PM	184	1	$0 \quad 86$	18	146	4	0	168	2	1	7	0	10	5	0	1	0	6	270
4:15PM	179	3	$0 \quad 83$	15	148	5	0	168	2	0	13	0	15	5	0	3	0	8	274
4:30PM	084	1	$0 \quad 85$	18	164	9	0	191	2	0	9	0	11	2	0	0	0	2	289
4:45PM	1103	0	$0 \quad 104$	22	137	5	0	164	5	0	11	0	16	0	1	3	0	4	288
Hourly Total	$3 \quad 350$	5	$0 \quad 358$	73	595	23	0	691	11	1	40	0	52	12	1	7	0	20	1121
5:00PM	086	5	$0 \quad 91$	19	151	11	0	181	7	1	7	0	15	5	0	1	0	6	293
5:15PM	098	3	$0 \quad 101$	21	144	7	0	172	2	0	9	0	11	3	1	1	0	5	289
5:30PM	098	3	$0 \quad 101$	10	177	5	0	192	2	0	9	0	11	1	2	0	0	3	307
5:45PM	175	4	$0 \quad 80$	21	138	7	0	166	1	1	18	0	20	2	0	4	0	6	272
Hourly Total	1357	15	$0 \quad 373$	71	610	30	0	711	12	2	43	0	57	11	3	6	0	20	1161
Total	$9 \quad 1744$	51	$0 \quad 1804$	206	1660	71	0	1937	42	5	198	0	245	44	8	20	0	72	4058
\% Approach	0.5\% 96.7\%	2.8\% 0	0\%	10.6\%	85.7\%	3.7\%		-	17.1\%	2.0\%	80.8\%		-	61.1\%	11.1\%	27.8\%		-	-
\% Total	0.2\% 43.0\%	1.3\% 0	0\% 44.5\%	5.1\%	40.9\%	1.7\%	0\%	47.7\%	1.0\%	0.1\%	4.9\%	0\%	6.0\%	1.1\%	0.2\%	0.5\%		1.8\%	-
Lights and Motorcycles	$9 \quad 1684$	50	$0 \quad 1743$	203	1592	71	0	1866	42	5	195	0	242	43	8	18	0	69	3920
\% Lights and Motorcycles	100\% 96.6\%	98.0\% 0	0\% 96.6\%	98.5\%	95.9\%	100\% 0	0\% 9	96.3\%	100\%	100\%	98.5\%	0\%	98.8\%	97.7\%	100\%	90.0\%	0\%	95.8\%	96.6\%
Heavy	$0 \quad 60$	1	$0 \quad 61$	3	68	0	0	71	0	0	3	0	3	1	0	2	0	3	138
\% Heavy	0\% 3.4\%	2.0\% 0	0\% 3.4\%	1.5\%	4.1\%	0\% 0	0\%	3.7\%	0\%	0\%	1.5\%	0\%	1.2\%	2.3\%	0\%	10.0\%		4.2\%	3.4\%

*L: Left, R: Right, T: Thru, U: U-Turn

Westone - TMC

Thu Dec 8, 2022
Full Length (7 AM-9 AM, 4 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy)
All Movements
ID: 1022794, Location: 29.645896, -82.623066, Site Code: Newberry Rd \& NW 266th St

Provided by: Hagen Consulting Services
361 Strawder Road, Ray City, GA, 31645, US
[N] NW 266th Street
Total: 157
In: 72 Out: 85

Out: 265 In: 245
Total: 510
[S] NW 266th Street

All Classes (Lights and Motorcycles, Heavy)
All Movements
ID: 1022794, Location: 29.645896, -82.623066, Site Code: Newberry Rd \& NW 266th St

Provided by: Hagen Consulting Services
361 Strawder Road,
Ray City, GA, 31645, US

* L: Left, R: Right, T: Thru, U: U-Turn

Westone - TMC
Thu Dec 8, 2022
AM Peak (7 AM - 8 AM)
All Classes (Lights and Motorcycles, Heavy)
All Movements
ID: 1022794, Location: 29.645896, -82.623066, Site Code: Newberry Rd \& NW 266th St
[N] NW 266th Street
Total: 31
In: 18 Out: 13
oma

Out: 57 In: 69
Total: 126
[S] NW 266th Street

PM Peak (4:45 PM - 5:45 PM) - Overall Peak Hour
All Classes (Lights and Motorcycles, Heavy)
All Movements
ID: 1022794, Location: 29.645896, -82.623066, Site Code: Newberry Rd \& NW 266th
St

Provided by: Hagen Consulting Services
361 Strawder Road,
Ray City, GA, 31645, US

Leg Direction	W Newberry Road Eastbound		W Newberry Road Westbound					NW 266th Street Northbound					NW 266th Street Southbound					
Time	L T	R U App	L	T	R	U	App	L	T	R	U	App	L	T	R	U	App	Int
2022-12-08 4:45PM	1103	0 0 104	22	137	5	0	164	5	0	11	0	16	0	1	3	0	4	288
5:00PM	086	$5{ }_{5} 00$	19	151	11	0	181	7	1	7	0	15	5	0	1	0	6	293
5:15PM	098	3 0 101	21	144	7	0	172	2	0	9	0	11	3	1	1	0	5	289
5:30PM	098	$3 \quad 0 \quad 101$	10	177	5	0	192	2	0	9	0	11	1	2	0	0	3	307
Total	1385	1100397	72	609	28	0	709	16	1	36	0	53	9	4	5	0	18	1177
\% Approach	0.3\% 97.0\%	2.8\% 0\%	10.2\%	85.9\%	3.9\% 0\%	0\%	-	30.2\%	1.9\%	67.9\%	0\%	-	50.0\%	22.2\%	27.8\%	\%\%		
\% Total	0.1\% 32.7\%	0.9\% 0\% 33.7\%	6.1\%	51.7\%	2.4\% 0\%	0\% 6	60.2\%	1.4\%	0.1\%	3.1\%		4.5\%	0.8\%	0.3\%	0.4\% 0	\%\%	1.5\%	
PHF	$0.250 \quad 0.934$	$0.550-0.954$	0.818	0.860	0.636	-	0.923	0.571	0.250	0.818	-	0.828	0.450	0.500	0.417		0.750	0.958
Lights and Motorcycles	1374	$\begin{array}{llll}11 & 0 & 386\end{array}$	69	600	28	0	697	16	1	35	0	52	9	4	5	0	18	1153
\% Lights and Motorcycles	100\% 97.1\%	100\% 0\% 97.2\%	95.8\%	98.5\%	100\% 0	0\% 9	98.3\%	100\%	100\%	97.2\%	0\%	98.1\%	100\%	100\%	100\% 0	\%\%	100\%	98.0\%
Heavy	$0 \quad 11$	$\begin{array}{lll}0 & 0 & 11\end{array}$	3	9	0	0	12	0	0	1	0	1	0	0	0	0	0	24
\% Heavy	0\% 2.9\%	0\% 0\% 2.8\%	4.2\%	1.5\%	0\% 0		1.7\%	0\%	0\%	2.8\%	0\%	1.9\%	0\%	0\%	0\% 0		0\%	2.0\%

* L: Left, R: Right, T: Thru, U: U-Turn

Westone - TMC

Thu Dec 8, 2022
PM Peak (4:45 PM - 5:45 PM) - Overall Peak Hour
All Classes (Lights and Motorcycles, Heavy)
All Movements
ID: 1022794, Location: 29.645896, -82.623066, Site Code: Newberry Rd \& NW 266th St

Provided by: Hagen Consulting Services
361 Strawder Road, Ray City, GA, 31645, US

Out: 87 In: 53
Total: 140
[S] NW 266th Street

APPENDIX C: SEASONAL ADJUSTMENT

2021 PEAK SEASON FACTOR CATEGORY REPORT - REPORT TYPE: ALL CATEGORY: 2600 ALACHUA COUNTYWIDE

* PEAK SEASON

APPENDIX D: HIGHWAY CAPACITY ANALYSES

HCS Two-Way Stop-Control Report

General Information		Site Information	
Analyst	LTH	Intersection	Newberry Road \& SW 266th Street
Agency/Co.	$2 / 10 / 2023$	Jurisdiction	Newberry-Alachua County
Date Performed	2025	East/West Street	Newberry Road (SR 26)
Analysis Year	PM Peak	North/South Street	SW 266th Street
Time Analyzed	East-West	Peak Hour Factor	0.96
Intersection Orientation	Westone - No Build	Analysis Time Period (hrs)	0.25
Project Description			
Lanes			

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	1		0	1	0		0	1	0
Configuration		L		TR		L	T	R			LTR				LTR	
Volume (veh/h)		1	413	12		77	653	30		17	1	39		10	4	5
Percent Heavy Vehicles (\%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage				Und	ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33

Delay, Queue Length, and Level of Service

HCS Two-Way Stop-Control Report

General Information		Site Information	
Analyst	LTH	Intersection	Newberry Road \& SW 266th Street
Agency/Co.	$4 / 10 / 2023$	Jurisdiction	Newberry-Alachua County
Date Performed	2025	East/West Street	Newberry Road (SR 26)
Analysis Year	PM Peak	North/South Street	SW 266th Street
Time Analyzed	East-West	Peak Hour Factor	0.96
Intersection Orientation	Westone - Build Westone	Analysis Time Period (hrs)	0.25
Project Description			
Lanes			

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	1		0	1	0		0	1	0
Configuration		L		TR		L	T	R			LTR				LTR	
Volume (veh/h)		1	413	12		223	653	30		17	1	131		10	4	5
Percent Heavy Vehicles (\%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized					No											
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33

Delay, Queue Length, and Level of Service

[^0]: *Cost of R / W accusation not included

[^1]: This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

 The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

[^2]: This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

 The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S.
 Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

[^3]: ${ }^{1}$ Federal Highway Administration, "Crash Modification Factors (CMF) Clearinghouse" web page.
 Available online at: www.cmfclearinghouse.org
 ${ }^{2}$ Ibid.

